Li XT, Cai XD, Liu C et al. Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning. Opto-Electron Adv 7, 240085 (2024). doi: 10.29026/oea.2024.240085
Citation: Li XT, Cai XD, Liu C et al. Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning. Opto-Electron Adv 7, 240085 (2024). doi: 10.29026/oea.2024.240085

Article Open Access

Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning

More Information
  • These authors contributed equally to this work

  • *Corresponding author: SY Xiao, E-mail: phxiao@shu.edu.cn
  • Scanning focused light with corrected aberrations holds great importance in high-precision optical systems. However, conventional optical systems, relying on additional dynamical correctors to eliminate scanning aberrations, inevitably result in undesired bulkiness and complexity. In this paper, we propose achieving adaptive aberration corrections coordinated with focus scanning by rotating only two cascaded transmissive metasurfaces. Each metasurface is carefully designed by searching for optimal phase-profile parameters of three coherently worked phase functions, allowing flexible control of both the longitudinal and lateral focal position to scan on any custom-designed curved surfaces. As proof-of-concept, we engineer and fabricate two all-silicon terahertz meta-devices capable of scanning the focal spot with adaptively corrected aberrations. Experimental results demonstrate that the first one dynamically scans the focal spot on a planar surface, achieving an average scanning aberration of 1.18% within the scanning range of ±30°. Meanwhile, the second meta-device scans two focal points on a planar surface and a conical surface with 2.5% and 4.6% scanning aberrations, respectively. Our work pioneers a breakthrough pathway enabling the development of high-precision yet compact optical devices across various practical domains.
  • 加载中
  • [1] Marshall GF, Stutz GE. Handbook of Optical and Laser Scanning. (CRC Press, Boca Raton, 2004).

    Google Scholar

    [2] Guthoff RF, Baudouin C, Stave J. Atlas of Confocal Laser Scanning In-vivo Microscopy in Ophthalmology. (Springer, Berlin Heidelberg, 2007).

    Google Scholar

    [3] Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [4] Sun SL, He Q, Xiao SY et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11, 426–431 (2012). doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [5] Yin XB, Ye ZL, Rho J et al. Photonic spin hall effect at metasurfaces. Science 339, 1405–1407 (2013). doi: 10.1126/science.1231758

    CrossRef Google Scholar

    [6] Lin RJ, Su VC, Wang SM et al. Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol 14, 227–231 (2019). doi: 10.1038/s41565-018-0347-0

    CrossRef Google Scholar

    [7] Geng Q, Wang DE, Chen PF et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun 10, 2179 (2019). doi: 10.1038/s41467-019-10249-2

    CrossRef Google Scholar

    [8] Yang BW, Liu T, Guo HJ et al. High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage. Sci Bull 64, 823–835 (2019). doi: 10.1016/j.scib.2019.05.028

    CrossRef Google Scholar

    [9] Zhang F, Pu MB, Li X et al. Extreme‐angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [10] Qiu CW, Zhang T, Hu GW et al. Quo vadis, metasurfaces. Nano Lett 21, 5461–5474 (2021). doi: 10.1021/acs.nanolett.1c00828

    CrossRef Google Scholar

    [11] Pan MY, Fu YF, Zheng MJ et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci Appl 11, 195 (2022). doi: 10.1038/s41377-022-00885-7

    CrossRef Google Scholar

    [12] Guan FX, Guo XD, Zeng KB et al. Overcoming losses in superlenses with synthetic waves of complex frequency. Science 381, 766–771 (2023). doi: 10.1126/science.adi1267

    CrossRef Google Scholar

    [13] Go GH, Park CH, Woo KY et al. Scannable dual-focus metalens with hybrid phase. Nano Lett 23, 3152–3158 (2023). doi: 10.1021/acs.nanolett.2c04696

    CrossRef Google Scholar

    [14] Cui TJ, Qi MQ, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 3, e218 (2014). doi: 10.1038/lsa.2014.99

    CrossRef Google Scholar

    [15] Chen K, Feng YJ, Monticone F et al. A reconfigurable active Huygens' metalens. Adv Mater 29, 1606422 (2017). doi: 10.1002/adma.201606422

    CrossRef Google Scholar

    [16] Zhang L, Chen XQ, Liu S et al. Space-time-coding digital metasurfaces. Nat Commun 9, 4334 (2018). doi: 10.1038/s41467-018-06802-0

    CrossRef Google Scholar

    [17] Casolaro A, Toscano A, Alù A et al. Dynamic beam steering with reconfigurable metagratings. IEEE Trans Antennas Propag 68, 1542–1552 (2020). doi: 10.1109/TAP.2019.2951492

    CrossRef Google Scholar

    [18] Zhang XG, Jiang WX, Jiang HL et al. An optically driven digital metasurface for programming electromagnetic functions. Nat Electron 3, 165–171 (2020). doi: 10.1038/s41928-020-0380-5

    CrossRef Google Scholar

    [19] Forouzmand A, Mosallaei H. A tunable semiconductor-based transmissive metasurface: dynamic phase control with high transmission level. Laser Photon Rev 14, 1900353 (2020). doi: 10.1002/lpor.201900353

    CrossRef Google Scholar

    [20] Venkatesh S, Lu XY, Saeidi H et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat Electron 3, 785–793 (2020). doi: 10.1038/s41928-020-00497-2

    CrossRef Google Scholar

    [21] Li Y, Lin J, Guo HJ et al. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv Opt Mater 8, 1901548 (2020). doi: 10.1002/adom.201901548

    CrossRef Google Scholar

    [22] Hu YQ, Ou XN, Zeng TB et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett 21, 4554–4562 (2021). doi: 10.1021/acs.nanolett.1c00104

    CrossRef Google Scholar

    [23] Kim J, Seong J, Yang Y et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv Photonics 4, 024001 (2022).

    Google Scholar

    [24] Xu Q, Su XQ, Zhang XQ et al. Mechanically reprogrammable Pancharatnam-Berry metasurface for microwaves. Adv Photonics 4, 016002 (2022).

    Google Scholar

    [25] Li QS, Cai XD, Liu T et al. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts. Nanophotonics 11, 2085–2096 (2022). doi: 10.1515/nanoph-2021-0801

    CrossRef Google Scholar

    [26] Li C, Jang J, Badloe T et al. Arbitrarily structured quantum emission with a multifunctional metalens. eLight 3, 19 (2023). doi: 10.1186/s43593-023-00052-4

    CrossRef Google Scholar

    [27] Qin JZ, Wang MJ, Qiu CW. Graphene metasurface hits the point. Light Sci Appl 12, 110 (2023). doi: 10.1038/s41377-023-01159-6

    CrossRef Google Scholar

    [28] Badloe T, Kim Y, Kim J et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano 17, 14678–14685 (2023). doi: 10.1021/acsnano.3c02471

    CrossRef Google Scholar

    [29] Xu HX, Ma SJ, Luo WJ et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Appl Phys Lett 109, 193506 (2016). doi: 10.1063/1.4967438

    CrossRef Google Scholar

    [30] Bernet S, Ritsch-Marte M. Adjustable refractive power from diffractive moiré elements. Appl Opt 47, 3722–3730 (2008). doi: 10.1364/AO.47.003722

    CrossRef Google Scholar

    [31] Iwami K, Ogawa C, Nagase T et al. Demonstration of focal length tuning by rotational varifocal moiré metalens in an ir-A wavelength. Opt Express 28, 35602–35614 (2020). doi: 10.1364/OE.411054

    CrossRef Google Scholar

    [32] Cai XD, Tang R, Zhou HY et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv Photonics 3, 036003 (2021).

    Google Scholar

    [33] Luo Y, Chu CH, Vyas S et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett 21, 5133–5142 (2021). doi: 10.1021/acs.nanolett.1c01114

    CrossRef Google Scholar

    [34] Liu S, Ma SJ, Shao RW et al. Moiré metasurfaces for dynamic beamforming. Sci Adv 8, eabo1511 (2022). doi: 10.1126/sciadv.abo1511

    CrossRef Google Scholar

    [35] Martins R J, Marinov E, Youssef M A B et al. Metasurface-enhanced light detection and ranging technology. Nat Commun 13, 5724 (2022). doi: 10.1038/s41467-022-33450-2

    CrossRef Google Scholar

    [36] Ogawa C, Nakamura S, Aso T et al. Rotational varifocal moiré metalens made of single-crystal silicon meta-atoms for visible wavelengths. Nanophotonics 11, 1941–1948 (2022). doi: 10.1515/nanoph-2021-0690

    CrossRef Google Scholar

    [37] Wei QS, Huang LL, Zhao RZ et al. Rotational multiplexing method based on cascaded metasurface holography. Adv Opt Mater 10, 2102166 (2022). doi: 10.1002/adom.202102166

    CrossRef Google Scholar

    [38] Zhang JC, Wu GB, Chen MK et al. A 6G meta-device for 3D varifocal. Sci Adv 9, eadf8478 (2023). doi: 10.1126/sciadv.adf8478

    CrossRef Google Scholar

    [39] Zhang JC, Chen MK, Fan YB et al. Miniature tunable airy beam optical meta-device. Opto-Electron Adv 7, 230171 (2024). doi: 10.29026/oea.2024.230171

    CrossRef Google Scholar

    [40] Kim J, Seong J, Kim W et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat Mater 22, 474–481 (2023). doi: 10.1038/s41563-023-01485-5

    CrossRef Google Scholar

    [41] Palmieri A, Dorrah AH, Yang J et al. Do dielectric bilayer metasurfaces behave as a stack of decoupled single-layer metasurfaces. Opt Express 32, 8146–8159 (2024). doi: 10.1364/OE.505401

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(1174) PDF downloads(360) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint