Xueao Zhang, Sen Zhang. Research advances in thermal metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 49-63. doi: 10.3969/j.issn.1003-501X.2017.01.004
Citation: Xueao Zhang, Sen Zhang. Research advances in thermal metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 49-63. doi: 10.3969/j.issn.1003-501X.2017.01.004

Research advances in thermal metamaterials

    Fund Project:
More Information
  • As a new member of the metamaterial family, thermal metamaterial has gained much attention from the very beginning, and has been intensively investigated in recent years. Based on the key technology of thermal metamaterials, the basic theory of coordinate transformation as well as the novel properties of thermal metamaterials is introduced, and the recent progresses of thermal metamaterials, such as thermal cloaking/stealth, thermal protection, thermal management, thermal Information and other aspects of applications have also been reviewed in this paper. Based on the research status and development trend of thermal metamaterials, we systematically classify and sort out the contents and characteristics of relevant research in recent years, and make some prospects about the future applications of thermal metamaterials in the fields of cloaking, thermal management, information and so on.
  • 加载中
  • [1] 于相龙, 周济.智能超材料研究与进展[J].材料工程, 2016, 44(7): 119-128. doi: 10.11868/j.issn.1001-4381.2016.07.020

    CrossRef Google Scholar

    Yu Xianglong, Zhou Ji. Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016, 44(7): 119-128. doi: 10.11868/j.issn.1001-4381.2016.07.020

    CrossRef Google Scholar

    [2] 徐象繁, 周俊, 杨诺, 等.人工微结构材料与热的调控[J].中国科学:技术科学, 2015, 45(7): 705-713.

    Google Scholar

    Xu Xiangfan, Zhou Jun, Yang Nuo, et al. Artificial microstructure materials and heat flux manipulation[J]. Scientia Sinica Technologica, 2015, 45(7): 705-713.

    Google Scholar

    [3] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5: 523-530. doi: 10.1038/nphoton.2011.154

    CrossRef Google Scholar

    [4] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. doi: 10.1070/PU1968v010n04ABEH003699

    CrossRef Google Scholar

    [5] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907

    CrossRef Google Scholar

    [6] Wegener M. Metamaterials beyond optics[J]. Science, 2013, 342(6161): 939-940. doi: 10.1126/science.1246545

    CrossRef Google Scholar

    [7] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084. doi: 10.1109/22.798002

    CrossRef Google Scholar

    [8] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79. doi: 10.1126/science.1058847

    CrossRef Google Scholar

    [9] Parazzoli C G, Greegor R B, Li K, et al. Experimental verification and simulation of negative index of refraction using Snell's law[J]. Physical Review Letters, 2003, 90(10): 107401. doi: 10.1103/PhysRevLett.90.107401

    CrossRef Google Scholar

    [10] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369. doi: 10.1126/science.1166949

    CrossRef Google Scholar

    [11] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339. doi: 10.1126/science.1186351

    CrossRef Google Scholar

    [12] Ma Huifeng, Cui Tiejun. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 2010, 1: 21.

    Google Scholar

    [13] Chen Xianzhong, Luo Yu, Zhang Jingjing, et al. Macroscopic invisibility cloaking of visible light[J]. Nature Communications, 2011, 2: 176. doi: 10.1038/ncomms1176

    CrossRef Google Scholar

    [14] Gharghi M, Gladden C, Zentgraf T, et al. A carpet cloak for visible light[J]. Nano Letters, 2011, 11(7): 2825-2828. doi: 10.1021/nl201189z

    CrossRef Google Scholar

    [15] Kocaman S, Aras M S, Hsieh P, et al. Zero phase delay in negative-refractive-index photonic crystal superlattices[J]. Nature Photonics, 2011, 5(8): 499-505. doi: 10.1038/nphoton.2011.129

    CrossRef Google Scholar

    [16] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [17] Shen Sheng, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology, 2010, 5(4): 251-255. doi: 10.1038/nnano.2010.27

    CrossRef Google Scholar

    [18] Fan C Z, Gao Y, Huang J P. Shaped graded materials with an apparent negative thermal conductivity[J]. Applied Physics Letters, 2008, 92(25): 251907. doi: 10.1063/1.2951600

    CrossRef Google Scholar

    [19] Guenneau S, Amra C, Veynante D. Transformation thermodynamics: cloaking and concentrating heat flux[J]. Optics Express, 2012, 20(7): 8207-8218. doi: 10.1364/OE.20.008207

    CrossRef Google Scholar

    [20] Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics: molding the flow of heat[J]. Physical Review Letters, 2013, 110(19): 195901. doi: 10.1103/PhysRevLett.110.195901

    CrossRef Google Scholar

    [21] Ma Y, Lan L, Jiang W, et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity[J]. NPG Asia Materials, 2013, 5: e73. doi: 10.1038/am.2013.60

    CrossRef Google Scholar

    [22] Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21): 214303. doi: 10.1103/PhysRevLett.108.214303

    CrossRef Google Scholar

    [23] Dede E M, Nomura T, Schmalenberg P, et al. Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects[J]. Applied Physics Letters, 2013, 103(6): 063501. doi: 10.1063/1.4816775

    CrossRef Google Scholar

    [24] Han Tiancheng, Bai Xue, Liu Dan, et al. Manipulating steady heat conduction by sensu-shaped thermal metamaterials[J]. Scientific Reports, 2015, 5: 10242. doi: 10.1038/srep10242

    CrossRef Google Scholar

    [25] Shen X, Li Y, Jiang C, et al. Thermal cloak-concentrator[J]. Applied Physics Letters, 2016, 109(3): 031907. doi: 10.1063/1.4959251

    CrossRef Google Scholar

    [26] Maldovan M. Narrow low-frequency spectrum and heat management by thermocrystals[J]. Physical Review Letters, 2013, 110(2): 025902. doi: 10.1103/PhysRevLett.110.025902

    CrossRef Google Scholar

    [27] Anufriev R, Nomura M. Thermal conductance boost in phononic crystal nanostructures[J]. Physical Review B, 2015, 91(24): 245417. doi: 10.1103/PhysRevB.91.245417

    CrossRef Google Scholar

    [28] Han Tiancheng, Qiu Chengwei. Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields[J]. Journal of Optics, 2016, 18(4): 044003. doi: 10.1088/2040-8978/18/4/044003

    CrossRef Google Scholar

    [29] Xu Hongyi, Shi Xihang, Gao Fei, et al. Ultrathin three-dimensional thermal cloak[J]. Physical Review Letters, 2014, 112(5): 054301. doi: 10.1103/PhysRevLett.112.054301

    CrossRef Google Scholar

    [30] Li Tinghua, Zhu Donglai, Mao Fuchun, et al. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Frontiers of Physics, 2016, 11: 110503. doi: 10.1007/s11467-016-0575-4

    CrossRef Google Scholar

    [31] Yuan Xuebo, Lin Guochang, Wang Youshan. Design of layered structure for thermal cloak with complex shape[J]. Modern Physics Letters B, 2016, 30(20): 1650256. doi: 10.1142/S0217984916502560

    CrossRef Google Scholar

    [32] Guenneau S, Petiteau D, Zerrad M, et al. Transformed fourier and fick equations for the control of heat and mass diffusion[J]. AIP Advances, 2015, 5(5): 053404. doi: 10.1063/1.4917492

    CrossRef Google Scholar

    [33] Farhat M, Chen P Y, Bagci H, et al. Thermal invisibility based on scattering cancellation and mantle cloaking[J]. Scientific Reports, 2015, 5: 9876. doi: 10.1038/srep09876

    CrossRef Google Scholar

    [34] Han Tiancheng, Bai Xue, Thong J T L, et al. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials[J]. Advanced Materials, 2014, 26(11): 1731-1734. doi: 10.1002/adma.201304448

    CrossRef Google Scholar

    [35] Nguyen D M, Xu Hongyi, Zhang Youming, et al. Active thermal cloak[J]. Applied Physics Letters, 2015, 107(12): 121901. doi: 10.1063/1.4930989

    CrossRef Google Scholar

    [36] García-Meca C, Barceló C. Dynamically tunable transformation thermodynamics[J]. Journal of Optics, 2016, 18(4): 044026. doi: 10.1088/2040-8978/18/4/044026

    CrossRef Google Scholar

    [37] Li J Y, Gao Y, Huang J P. A bifunctional cloak using transformation media[J]. Journal of Applied Physics, 2010, 108(7): 074504. doi: 10.1063/1.3490226

    CrossRef Google Scholar

    [38] Moccia M, Castaldi G, Savo S, et al. Independent manipulation of heat and electrical current via bifunctional metamaterials[J]. Physical Review X, 2014, 4(2): 021025. doi: 10.1103/PhysRevX.4.021025

    CrossRef Google Scholar

    [39] Ma Yungui, Liu Yichao, Raza M, et al. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously[J]. Physical Review Letters, 2014, 113(20): 205501. doi: 10.1103/PhysRevLett.113.205501

    CrossRef Google Scholar

    [40] Lan Chuwen, Li Bo, Zhou Ji. Simultaneously concentrated electric and thermal fields using fan-shaped structure[J]. Optics Express, 2015, 23(19): 24475-24483. doi: 10.1364/OE.23.024475

    CrossRef Google Scholar

    [41] Yang Tianzhi, Bai Xue, Gao Dongliang, et al. Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields[J]. Advanced Materials, 2015, 27(47): 7752-7758. doi: 10.1002/adma.201502513

    CrossRef Google Scholar

    [42] Alù A. Thermal cloaks get hot[J]. Physics, 2014, 7: 12. doi: 10.1103/Physics.7.12

    CrossRef Google Scholar

    [43] Shen Xiangying, Li Ying, Jiang Chaoran, et al. Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change[J]. Physical Review Letters, 2016, 117(5): 055501. doi: 10.1103/PhysRevLett.117.055501

    CrossRef Google Scholar

    [44] Wang C, Chen W, Han C, et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition[J]. Scientific Reports, 2014, 4: 4537.

    Google Scholar

    [45] Zheng Xiaoming, Chen Wei, Wang Guang, et al. The Raman redshift of graphene impacted by gold nanoparticles[J]. AIP Advances, 2015, 5(5): 057133. doi: 10.1063/1.4921316

    CrossRef Google Scholar

    [46] Chen Wei, Qin Shiqiao, Zhang Xueao, et al. Current induced doping in graphene-based transistor with asymmetrical contact barriers[J]. Applied Physics Letters, 2014, 104(8): 083115. doi: 10.1063/1.4867018

    CrossRef Google Scholar

    [47] Chen Wei, Qin Shiqiao, Zhang Xueao, et al. Current self-amplification effect of graphene-based transistor in high-field transport[J]. Carbon, 2014, 77: 1090-1094. doi: 10.1016/j.carbon.2014.06.025

    CrossRef Google Scholar

    [48] Chen W, Wang F, Qin S, et al. Observation of complete space-charge-limited transport in metal-oxide-graphene hetero structure[J]. Applied Physics Letters, 2015, 106(2): 023122. doi: 10.1063/1.4906202

    CrossRef Google Scholar

    [49] Yan Bo, Fang Jingyue, Qin Shiqiao, et al. Experimental study of plasmon in a grating coupled graphene device with a resonant cavity[J]. Applied Physics Letters, 2015, 107(19): 191905. doi: 10.1063/1.4935344

    CrossRef Google Scholar

    [50] Chen Wei, Yu Yayun, Zheng Xiaoming, et al. All-carbon based graphene field effect transistor with graphitic electrodes fabricated by e-beam direct writing on PMMA[J]. Scientific Reports, 2015, 5: 12198. doi: 10.1038/srep12198

    CrossRef Google Scholar

    [51] Chang C W, Okawa D, Majumdar A, et al. Solid-state thermal rectifier[J]. Science, 2006, 314(5802): 1121-1124. doi: 10.1126/science.1132898

    CrossRef Google Scholar

    [52] Sawaki D, Kobayashi W, Moritomo Y, et al. Thermal rectification in bulk materials with asymmetric shape[J]. Applied Physics Letters, 2011, 98(8): 081915. doi: 10.1063/1.3559615

    CrossRef Google Scholar

    [53] Tian He, Xie Dan, Yang Yi, et al. A novel solid-state thermal rectifier based on reduced graphene oxide[J]. Scientific Reports, 2012, 2: 523. doi: 10.1038/srep00523

    CrossRef Google Scholar

    [54] Li Ying, Shen Xiangying, Wu Zuhui, et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503. doi: 10.1103/PhysRevLett.115.195503

    CrossRef Google Scholar

    [55] Li Baowen, Wang Lei, Casati G. Negative differential thermal resistance and thermal transistor[J]. Applied Physics Letters, 2006, 88(14): 143501. doi: 10.1063/1.2191730

    CrossRef Google Scholar

    [56] Joulain K, Drevillon J, Ezzahri Y, et al. Quantum thermal transistor[J]. Physical Review Letters, 2016, 116(20): 200601. doi: 10.1103/PhysRevLett.116.200601

    CrossRef Google Scholar

    [57] Wang Lei, Li Baowen. Thermal logic gates: computation with phonons[J]. Physical Review Letters, 2007, 99(17): 177208. doi: 10.1103/PhysRevLett.99.177208

    CrossRef Google Scholar

    [58] Wang Lei, Li Baowen. Thermal memory: a storage of phononic information[J]. Physical Review Letters, 2008, 101(26): 267203. doi: 10.1103/PhysRevLett.101.267203

    CrossRef Google Scholar

    [59] Xie Rongguo, Bui C T, Varghese B, et al. An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams[J]. Advanced Functional Materials, 2011, 21(9): 1602-1607. doi: 10.1002/adfm.201002436

    CrossRef Google Scholar

    [60] Elzouka M, Ndao S. Near-field NanoThermoMechanical memory[J]. Applied Physics Letters, 2014, 105(24): 243510. doi: 10.1063/1.4904828

    CrossRef Google Scholar

    [61] Ito K, Nishikawa K, Iizuka H. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide[J]. Applied Physics Letters, 2016, 108(5): 053507. doi: 10.1063/1.4941405

    CrossRef Google Scholar

  • Abstract:Metamaterials, with artificially engineered periodic structure, has attracted a great deal of research attention, for the ability of manipulating the path of propagation of light or electromagnetic wave, sound or acoustic / elastic wave, heat or thermal wave and the possibility of cloaking objects from a certain incoming physical radiation, which has brought the invisibility or stealth, a tantalizing concept for mankind over several centuries in the science fiction to a technological reality. As a relative new member of the metamaterials family, thermal metamaterial has also gained much attention from the very beginning, and has been intensively investigated in recent years, for the promising ability of controlling the conduction of heat or the distribution of temperature. Thermal metamaterials and their applications in thermal management are significant in the design of electronic devices and systems, such as supercomputer, solid-state laser and solid-state lighting, high power microwave devices, thermoelectric energy harvesters and thermal imagers, where the thermal design plays a key role in performance and device reliability.

    In this review, we first make a general introduction and brief summary of the main progresses in metamaterials, especially in the area of optics and electromagnetics. Then the basic theory of coordinate transformation as well as the novel phenomenon of cloaking in metamaterials has been introduced, which is the key technology and original demonstration of all kinds of metamaterials. As a matter of fact, transformation optics has also made the hitherto inconceivable advancements in the field of thermodynamics possible with the remarkable assistance of metamaterials. We mainly focus on the review of the brief advances, recent progresses and trend of development in the field of thermal metamaterials, both of theoretical simulation as well as experimental results. We have amply narrated the design, models, approaches, results and behaviors of thermal metamaterials, and their applications in heat flux manipulation, thermal cloaking or stealth, thermal mirage, thermal protection, thermal management, thermal Information and many other aspects in this paper. Among these reported progresses, thermal cloaking, which manipulates the heat flux in such a way that it can neither enter into the cloaked region nor be distorted outside, is a particularly important subject in studying the thermal metamaterials due to its potential multidimensional applications, and sort out to be transformation-based cloaking (with inhomogeneous and anisotropic parameters), three dimensional cloaking (with a spherical shell structure), irregular-shaped cloaking (theoretical simulation), ultra-thin cloaking, active cloaking (controlled by external electric field), time-dependent cloaking, multi-physical cloaking (cloaking in both heat and current) etc. Finally, based on the research status and development trend of thermal metamaterials, we have systematically summarized, classified and compared the contents and characteristics of relevant research in recent years, both in China and abroad, and provide an outlook on the future directions as well as applications of thermal metamaterials in the fascinating fields of cloaking, thermal management, information and so on. This review is helpful for understanding and further developing thermal metamaterials in applicable concepts and practical techniques for a variety of different thermal devices and systems, and to pave a way for the new avenues that leads to new future technologies.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(26)

Tables(1)

Article Metrics

Article views(13208) PDF downloads(6161) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint