Wang Daopeng, Fan Qingbin, Wang Jiaxing, et al. All-dielectric metasurface beam deflector at the visible frequencies[J]. Opto-Electronic Engineering, 2017, 44(1): 103-107. doi: 10.3969/j.issn.1003-501X.2017.01.012
Citation: Wang Daopeng, Fan Qingbin, Wang Jiaxing, et al. All-dielectric metasurface beam deflector at the visible frequencies[J]. Opto-Electronic Engineering, 2017, 44(1): 103-107. doi: 10.3969/j.issn.1003-501X.2017.01.012

All-dielectric metasurface beam deflector at the visible frequencies

More Information
  • Beam deflectors are important optical elements which can control the propagation direction of the beam in free space. However, with the development of miniaturization of the optical systems, conventional reflector-based mechanical beam deflectors confront a huge challenge due to their large sizes and incompatibility to the device integration. Here we propose an all-dielectric flat metasurface beam deflector which is composed of a single layer array of TiO2 nanoantennas resting on a fused-silica substrate. Numerical simulations are performed to demonstrate that the proposed deflectors are able to efficiently deflect the incident beam for different angles with transmission efficiency higher than 80% at visible frequencies. This ultrathin all-dielectric metasurface deflector may have great potential applications in integrated optics.

  • 加载中
  • [1] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759. doi: 10.1364/OE.16.004753

    CrossRef Google Scholar

    [2] Wang Y, Wang L L, Liu J Q, et al. Plasmonic surface-wave bidirectional splitter in different angles of incident light[J]. Optics Communications, 2010, 283(9): 1777-1779. doi: 10.1016/j.optcom.2009.12.072

    CrossRef Google Scholar

    [3] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [4] Yu Nanfang, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [5] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [6] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. ScienceAdvances, 2016, 2(1): e1501168.

    Google Scholar

    [7] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221. doi: 10.1364/OE.22.026212

    CrossRef Google Scholar

    [8] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328-330. doi: 10.1063/1.1539300

    CrossRef Google Scholar

    [9] Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8): 5358-5362. doi: 10.1021/acs.nanolett.5b01727

    CrossRef Google Scholar

    [10] Khorasaninejad M, Chen W T, Zhu A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595-4600. doi: 10.1021/acs.nanolett.6b01897

    CrossRef Google Scholar

    [11] Ni Xingjie, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807. doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [12] Zheng Guoxing, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [13] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [14] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [15] Yu Nanfang, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi: 10.1021/nl303445u

    CrossRef Google Scholar

    [16] Chen Weiting, Török P, Foreman M R, et al. Integrated plasmonic metasurfaces for spectropolarimetry[J]. Nanotechnology, 2016, 27(22): 224002. doi: 10.1088/0957-4484/27/22/224002

    CrossRef Google Scholar

    [17] Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 2016, 7: 13682. doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [18] Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365

    CrossRef Google Scholar

    [19] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494

    CrossRef Google Scholar

    [20] Yang Yuanmu, Wang Wenyi, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3): 1394-1399. doi: 10.1021/nl4044482

    CrossRef Google Scholar

    [21] Lin Dianmin, Fan Pengyu, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [22] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [23] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22): 27438-27451. doi: 10.1364/OE.21.027438

    CrossRef Google Scholar

    [24] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [25] Liu Zhaocheng, Li Zhancheng, Liu Zhe, et al. Beam Deflectors: high-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces[J]. Advanced Functional Materials, 2015, 25(34): 5567. doi: 10.1002/adfm.v25.34

    CrossRef Google Scholar

    [26] Su Xiaoqiang, Ouyang Chunmei, Xu Ningning, et al. Active metasurface terahertz deflector with phase discontinuities[J]. Optics Express, 2015, 23(21): 27152-27158. doi: 10.1364/OE.23.027152

    CrossRef Google Scholar

    [27] Shalaev M I, Sun Jingbo, Tsukernik A, et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 2015, 15(9): 6261- 6266. doi: 10.1021/acs.nanolett.5b02926

    CrossRef Google Scholar

    [28] Khorasaninejad M, Crozier K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter[J]. Nature Communications, 2014, 5: 5386. doi: 10.1038/ncomms6386

    CrossRef Google Scholar

    [29] Ding Xumin, Monticone F, Zhang Kuang, et al. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency[J]. Advanced Materials, 2015, 27(7): 1195- 1200. doi: 10.1002/adma.201405047

    CrossRef Google Scholar

    [30] Zhao Wenyu, Jiang Huan, Liu Bingyi, et al. High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface[J]. Applied Physics Letters, 2016, 108(18): 181102. doi: 10.1063/1.4948518

    CrossRef Google Scholar

    [31] DeVore J R. Refractive indices of rutile and sphalerite[J]. Journal of the Optical Society of America, 1951, 41(6): 416-419. doi: 10.1364/JOSA.41.000416

    CrossRef Google Scholar

    [32] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi: 10.1002/adma.201204850

    CrossRef Google Scholar

  • Abstract: Beam deflectors, which are able to change or control the propagation direction of the beam in free space, are important optical components in integrated optical circuit and optical communication systems. However, with the development of miniaturization of the optical systems, conventional reflector-based mechanical beam deflectors confront a huge challenge due to their large size and incompatible to the device integration. Recently, metasurfaces, also known as two-dimensional metamaterials, have attracted significant attentions due to their ultrathin thicknesses and perfect controlling of amplitude, phase and polarization of the beams. On account of full 2p phase control, metasurfaces are widely used in lensing, holograms, wave plates and other applications. The original metasurfaces are mainly designed using metallic resonant structures. However, metallic metasurfaces always have large ohmic losses, which are similar to the plasmonic structures. To overcome the loss issue, metasurfaces using dielectrics, such as silicon and titanium dioxide (TiO2), appear and are widely employed in the novel optical devices' design. Here we propose and design an all-dielectric flat metasurface beam deflector which is composed of a single layer array of TiO2 nanoantennas resting on a fused-silica substrate. The TiO2 nanoantennas are considered as birefringent elements and the Jones transfer matrix can be used to model electrometric response of each TiO2 nanoantenna. Based on the phase discontinuity principle, we design the beam deflectors that operate at the wavelengths of 450 nm, 532 nm, and 633 nm, respectively. For the circularly polarized incident light, the polarization conversion efficiencies of the designed beam deflectors are all higher than 90% at the operation wavelength. Numerical simulations based on the finite-difference time-domain (FDTD) algorithm show that deflecting behaviors of the proposed devices with deflection angles of 15°, 30° and 45° are all in excellent agreement with our theoretical predictions. The simulated optical transmissions of the designed deflectors are 88.2%, 86.8% and 71.3% for 15°, 30° and 45° at wavelength of 450nm; 86.7%, 86.4%, 69.7% for 15°, 30° and 45° at wavelength of 532nm and 89.3%, 80.6%, 62.0% for 15°, 30° and 45° at wavelength of 633nm, respectively. Compared with other thin-film plasmonic beam deflectors using metallic nanoslits, the transmission efficiencies of the metasurface beam deflectors are much higher. The all-dielectric metasurface beam deflector may have potential applications for manipulation of the light propagation in the high-integration optical systems.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(9120) PDF downloads(3439) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint