Jianping Shi, Yanping Ji, Zimin Li, et al. Research progress of nonlinear optical effect in all-dielectric photonic crystals[J]. Opto-Electronic Engineering, 2017, 44(3): 297-312. doi: 10.3969/j.issn.1003-501X.2017.03.004
Citation: Jianping Shi, Yanping Ji, Zimin Li, et al. Research progress of nonlinear optical effect in all-dielectric photonic crystals[J]. Opto-Electronic Engineering, 2017, 44(3): 297-312. doi: 10.3969/j.issn.1003-501X.2017.03.004

Research progress of nonlinear optical effect in all-dielectric photonic crystals

    Fund Project:
More Information
  • How to excite the nonlinear optical effect in the case of low threshold (mW or pJ order) and small scale (μm or less) is a topic field of optical research in recent years. The most direct application requirement is photonic integrated circuit, which is the foundation to realize the ultra-high speed and large capacity information network in the future. Photonic crystals (PCs) have the photonic band gap (PBG) just like the semiconductor band for electronics, so it is known as "photonic semiconductors". PCs provide a novel and practical means of manipulating photons, therefore the possibility of photonic integrated circuit with low threshold arises. More and more nonlinear effects have been found in PCs, such as photonic crystal slow light, the band gap soliton, electromagnetic induction transparency, second harmonic generation and optical bistability. This paper will focus on the summaries of some major achievements and advances about PCs that would promote the nonlinear photonic integrated devices. Certainly the related applications will be introduced and the future outlook of the nonlinear PCs will be discussed.
  • 加载中
  • [1] Joannopoulos J D, Villeneuve P R, Fan Shanhui. Photonic crystals: putting a new twist on light[J]. Nature, 1997, 386(6621): 143-149. doi: 10.1038/386143a0

    CrossRef Google Scholar

    [2] Benisty H, Weisbuch C, Labilloy D, et al. Optical and confinement properties of two-dimensional photonic crystals[J]. Journal of Lightwave Technology, 1999, 17(11): 2063-2077. doi: 10.1109/50.802996

    CrossRef Google Scholar

    [3] Srinivasan K, Barclay P E, Painter O, et al. Experimental demonstration of a high quality factor photonic crystal microcavity[J]. Applied Physics Letters, 2003, 83(10): 1915-1917. doi: 10.1063/1.1606866

    CrossRef Google Scholar

    [4] Ryu H Y, Kwon S H, Lee Y J, et al. Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs[J]. Applied Physics Letters, 2002, 80(19): 3476. doi: 10.1063/1.1477617

    CrossRef Google Scholar

    [5] Englund D, Shields B, Rivoire K, et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity[J]. Nano Letters, 2010, 10(10): 3922-3926. doi: 10.1021/nl101662v

    CrossRef Google Scholar

    [6] McGurn A R. Photonic crystal waveguide weakly interacting with multiple off-channel resonant features formed of Kerr nonlinear dielectric media[J]. Advances in OptoElectronics, 2007, 2007: 92901.

    Google Scholar

    [7] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3-4): 131-314. doi: 10.1016/j.physrep.2004.11.001

    CrossRef Google Scholar

    [8] Pitarke J M, Silkin V M, Chulkov E V, et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 2007, 70: 1-87. doi: 10.1088/0034-4885/70/1/R01

    CrossRef Google Scholar

    [9] Russell P. Photonic crystal fibers[M]. Beijing: Peking University Press, 2013.

    Google Scholar

    [10] Hansen K P. Introduction to nonlinear photonic crystal fibers[J]. Journal of Optical and Fiber Communications Reports, 2005, 2(3): 226-254. doi: 10.1007/s10297-004-0021-1

    CrossRef Google Scholar

    [11] Knight J C, Skryabin D V. Nonlinear waveguide optics and photonic crystal fibers[J]. Optics Express, 2007, 15(23): 15365-15376. doi: 10.1364/OE.15.015365

    CrossRef Google Scholar

    [12] Mori D, Baba T. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide[J]. Optics Express, 2005, 13(23): 9398-9408. doi: 10.1364/OPEX.13.009398

    CrossRef Google Scholar

    [13] Schulz S A, O'Faolain L, Beggs D M, et al. Dispersion engineered slow light in photonic crystals: a comparison[J]. Journal of Optics, 2010, 12(10): 104004. doi: 10.1088/2040-8978/12/10/104004

    CrossRef Google Scholar

    [14] 沈宏君, 田慧平, 纪越峰.一种新型无色散慢光光子晶体薄板波导[J].物理学报, 2010, 59(4): 2820-2826. doi: 10.7498/aps.59.2820

    CrossRef Google Scholar

    Shen Hongjun, Tian Huiping, Ji Yuefeng. A novel photonic crystal slab waveguide with dispersionless slow light[J]. Acta Physica Sinica, 2010, 59(4): 2820-2826. doi: 10.7498/aps.59.2820

    CrossRef Google Scholar

    [15] Li Juntao, White T P, O'Faolain L, et al. Systematic design of flat band slow light in photonic crystal waveguides[J]. Optics Express, 2008, 16(9): 6227-6232. doi: 10.1364/OE.16.006227

    CrossRef Google Scholar

    [16] Frandsen L H, Lavrinenko A V, Fage-Pedersen J, et al. Photonic crystal waveguides with semi-slow light and tailored dispersion properties[J]. Optics Express, 2006, 14(20): 9444-9450. doi: 10.1364/OE.14.009444

    CrossRef Google Scholar

    [17] Baba T. Slow light in photonic crystals[J]. Nature Photonics, 2008, 2(8): 465-473. doi: 10.1038/nphoton.2008.146

    CrossRef Google Scholar

    [18] Pourmand M, Karimkhani A, Moravvej-Farshi M K. Slow light photonic crystal waveguides with large delay-bandwidth product[J]. Optical Engineering, 2016, 55(12): 123108. doi: 10.1117/1.OE.55.12.123108

    CrossRef Google Scholar

    [19] Wu Hong, Citrin D S, Jiang Liyong, et al. Polarization-independent slow light in annular photonic crystals[J]. Applied Physics Letters, 2013, 102(14): 141112. doi: 10.1063/1.4801977

    CrossRef Google Scholar

    [20] Notomi M, Kuramochi E, Tanabe T. Large-scale arrays of ultrahigh-Q coupled nanocavities[J]. Nature Photonics, 2008, 2(12): 741-747. doi: 10.1038/nphoton.2008.226

    CrossRef Google Scholar

    [21] 陈志刚.奇妙的空间光孤子[J].物理, 2001, 30(12): 752-756. doi: 10.3321/j.issn:0379-4148.2001.12.004

    CrossRef Google Scholar

    Chen Zhigang. Fascinating behavior of optical spatial solitons[J]. Physics, 2001, 30(12): 752-756. doi: 10.3321/j.issn:0379-4148.2001.12.004

    CrossRef Google Scholar

    [22] Chen Wei, Mills D L. Gap solitons and the nonlinear optical response of superlattices[J]. Physical Review Letters, 1987, 58(2): 160-163. doi: 10.1103/PhysRevLett.58.160

    CrossRef Google Scholar

    [23] Ouzounov D G, Ahmad F R, Müller D, et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers[J]. Science, 2003, 301(5640): 1702-1704. doi: 10.1126/science.1088387

    CrossRef Google Scholar

    [24] Ouzounov D G, Hensley C J, Gaeta A, et al. Soliton pulse compression in photonic band-gap fibers[J]. Optics Express, 2005, 13(16): 6153-6159. doi: 10.1364/OPEX.13.006153

    CrossRef Google Scholar

    [25] Chiao R Y. Introduction to spatial solitons[M]. Trillo S, Torruellas W. Spatial Solitons. Berlin Heidelberg: Springer, 2001: 1-18.

    Google Scholar

    [26] Duree Jr G, Shultz J L, Salamo G J, et al. Observation of self-trapping of an optical beam due to the photorefractive effect[J]. Physical Review Letters, 1993, 71(4): 533-536. doi: 10.1103/PhysRevLett.71.533

    CrossRef Google Scholar

    [27] Chen Zhigang, Segev M, Christodoulides D N. Optical spatial solitons: historical overview and recent advances[J]. Reports on Progress in Physics Physical Society, 2012, 75(8): 086401. doi: 10.1088/0034-4885/75/8/086401

    CrossRef Google Scholar

    [28] Sukhorukov A A, Kivshar Y S. Spatial optical solitons in nonlinear photonic crystals[J]. Physical Review E, 2002, 65(3): 036609. doi: 10.1103/PhysRevE.65.036609

    CrossRef Google Scholar

    [29] Gorza S P, Taillaert D, Baets R, et al. Experimental characterization of optical-gap solitons in a one-dimensional photonic crystal made of a corrugated semiconductor planar waveguide[J]. Physical Review B, 2006, 74(23): 235327. doi: 10.1103/PhysRevB.74.235327

    CrossRef Google Scholar

    [30] Xie Ping, Zhang Zhaoqing, Zhang Xiangdong. Gap solitons and soliton trains in finite-sized two-dimensional periodic and quasiperiodic photonic crystals[J]. Physical Review E, 2003, 67(2): 026607. doi: 10.1103/PhysRevE.67.026607

    CrossRef Google Scholar

    [31] Tian Huiping, Yang Daquan, Liu Lingyu, et al. Broadband and low-power bright soliton propagation in line-defect photonic crystal waveguide[J]. Optical Engineering, 2013, 52(5): 055006. doi: 10.1117/1.OE.52.5.055006

    CrossRef Google Scholar

    [32] Zeng Jianhua, Malomed B A. Two-dimensional intraband solitons in lattice potentials with local defects and self-focusing nonlinearity[J]. Journal of the Optical Society of America B, 2013, 30(7): 1786-1793. doi: 10.1364/JOSAB.30.001786

    CrossRef Google Scholar

    [33] Inoue K, Oda H, Ikeda N, et al. Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect.[J]. Optics Express, 2009, 17(9):7206-16. doi: 10.1364/OE.17.007206

    CrossRef Google Scholar

    [34] Matsuda N, Kato T, Harada K. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.[J]. Optics Express, 2011, 19(21): 19861. doi: 10.1364/OE.19.019861

    CrossRef Google Scholar

    [35] Suzuki K, Hamachi Y, Baba T. Fabrication and characterization of chalcogenide glass photonic crystal waveguides[J]. Optics Express, 2009, 17(25): 22393-22400. doi: 10.1364/OE.17.022393

    CrossRef Google Scholar

    [36] Monat C, Corcoran B, Ebnali-Heidari M, et al. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides[J]. Optics Express, 2009, 17(4): 2944- 2953. doi: 10.1364/OE.17.002944

    CrossRef Google Scholar

    [37] Peccianti M, Ferrera M, Razzari L, et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper[J]. Optics Express, 2010, 18(8): 7625-7633. doi: 10.1364/OE.18.007625

    CrossRef Google Scholar

    [38] Liao Meisong, Chaudhari C, Qin Guanshi, et al. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation[J]. Optics Express, 2009, 17(14): 12174-12182. doi: 10.1364/OE.17.012174

    CrossRef Google Scholar

    [39] Colman P, Husko C, Combrié S, et al. Temporal solitons and pulse compression in photonic crystal waveguides[J]. Nature Photonics, 2010, 4(12): 862-868. doi: 10.1038/nphoton.2010.261

    CrossRef Google Scholar

    [40] Blanco-Redondo A, Husko C, Eades D, et al. Observation of soliton compression in silicon photonic crystals[J]. Nature Communications, 2014, 5: 3160.

    Google Scholar

    [41] Eisaman M D, André A, Massou F, et al. Electromagnetically induced transparency with tunable single-photon pulses[J]. Nature, 2005, 438(7069): 837-841. doi: 10.1038/nature04327

    CrossRef Google Scholar

    [42] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633-673. doi: 10.1103/RevModPhys.77.633

    CrossRef Google Scholar

    [43] Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593-2596. doi: 10.1103/PhysRevLett.66.2593

    CrossRef Google Scholar

    [44] Yanik M F, Suh W, Wang Zheng, et al. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency[J]. Physical Review Letters, 2005, 93(23): 233903.

    Google Scholar

    [45] Xu Qianfan, Sandhu S, Povinelli M L, et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency[J]. Physical Review Letters, 2006, 96(12): 123901. doi: 10.1103/PhysRevLett.96.123901

    CrossRef Google Scholar

    [46] Xiao Y F, Gao J, Zou X B, et al. Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations[J]. New Journal of Physics, 2008, 10(12): 123013. doi: 10.1088/1367-2630/10/12/123013

    CrossRef Google Scholar

    [47] Yang Xiaodong, Yu Mingbin, Kwong D L, et al. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities[J]. Physical Review Letters, 2009, 102(17): 173902. doi: 10.1103/PhysRevLett.102.173902

    CrossRef Google Scholar

    [48] Kocaman S, Yang X, McMillan J F, et al. Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities[J]. Applied Physics Letters, 2010, 96(22): 221111. doi: 10.1063/1.3446893

    CrossRef Google Scholar

    [49] Wang Dan, Wu Jinze, Zhang Junxiang. Optical control of light propagation in photonic crystal based on electromagnetically induced transparency[J]. Chinese Physics B, 2016, 25(6): 064202. doi: 10.1088/1674-1056/25/6/064202

    CrossRef Google Scholar

    [50] Wang Dawei, Zhou Haitao, Guo Miaojun, et al. Optical diode made from a moving photonic crystal[J]. Physical Review Letters, 2013, 110(9): 093901. doi: 10.1103/PhysRevLett.110.093901

    CrossRef Google Scholar

    [51] Ooi C H R, Kam C H. Controlling quantum resonances in photonic crystals and thin films with electromagnetically induced transparency[J]. Physical Review B, 2010, 81(19): 195119. doi: 10.1103/PhysRevB.81.195119

    CrossRef Google Scholar

    [52] Li Yongyao, Malomed B A, Feng Mingneng, et al. Arrayed and checkerboard optical waveguides controlled by the electromagnetically induced transparency[J]. Physical Review A, 2010, 82(6): 063813. doi: 10.1103/PhysRevA.82.063813

    CrossRef Google Scholar

    [53] Yu N E, Ro J H, Cha M, et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band[J]. Optics Letters, 2002, 27(12): 1046-1048. doi: 10.1364/OL.27.001046

    CrossRef Google Scholar

    [54] Ashihara S, Shimura T, Kuroda K. Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings[J]. Journal of the Optical Society of America B, 2003, 20(5): 853-856. doi: 10.1364/JOSAB.20.000853

    CrossRef Google Scholar

    [55] Arie A, Habshoosh N, Bahabad A. Quasi phase matching in two-dimensional quadratic nonlinear photonic crystals[M]. Sibilia C, Benson T M, Marciniak M, et al. Photonic Crystals: Physics and Technology. Milan: Springer, 2008: 45-60.

    Google Scholar

    [56] Ren Mingliang, Ma Dongli, Li Zhiyuan. Experimental demonstration of super quasi-phase matching in nonlinear photonic crystal[J]. Optics Letters, 2011, 36(18): 3696-3698. doi: 10.1364/OL.36.003696

    CrossRef Google Scholar

    [57] Eshniezov B E, Eshchanov B K, Yusupov D B, et al. On the theory of second-harmonic generation in 2D nonlinear photonic crystals with arbitrary domain structures[J]. Physics of Wave Phenomena, 2016, 24(4): 268-271. doi: 10.3103/S1541308X16040038

    CrossRef Google Scholar

    [58] Mattiucci N, Bloemer M J, D'Aguanno G. Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal[J]. Optics Express, 2014, 22(6): 6381-6390. doi: 10.1364/OE.22.006381

    CrossRef Google Scholar

    [59] Kopylov D A, Svyakhovskiy S E, Dergacheva L V, et al. Observation of optical second-harmonic generation in porous-silicon-based photonic crystals in the Laue diffraction scheme[J]. Physical Review A, 2016, 93(5): 053840. doi: 10.1103/PhysRevA.93.053840

    CrossRef Google Scholar

    [60] Genereux F, Leonard S W, van Driel H M, et al. Large birefringence in two-dimensional silicon photonic crystals[J]. Physical Review B, 2001, 63(16): 161101. doi: 10.1103/PhysRevB.63.161101

    CrossRef Google Scholar

    [61] Mandatori A, Sibilia C, Centini M, et al. Birefringence in one-dimensional finite photonic band gap structure[J]. Journal of the Optical Society of America B, 2003, 20(3): 504-513. doi: 10.1364/JOSAB.20.000504

    CrossRef Google Scholar

    [62] Levy M, Jalali A A. Band structure and Bloch states in birefringent one-dimensional magnetophotonic crystals: an analytical approach[J]. Journal of the Optical Society of America B, 2007, 24(7): 1603-1609. doi: 10.1364/JOSAB.24.001603

    CrossRef Google Scholar

    [63] Diziain S, Geiss R, Zilk M, et al. Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity[J]. Applied Physics Letters, 2013, 103(5): 051117. doi: 10.1063/1.4817507

    CrossRef Google Scholar

    [64] Rivoire K, Lin Ziliang, Hatami F, et al. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power[J]. Optics Express, 2009, 17(25): 22609-22615. doi: 10.1364/OE.17.022609

    CrossRef Google Scholar

    [65] Yamada S, Song B S, Jeon S, et al. Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity[J]. Optics Letters, 2014, 39(7): 1768-1771. doi: 10.1364/OL.39.001768

    CrossRef Google Scholar

    [66] Zeng Y, Roland I, Checoury X, et al. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon[J]. Applied Physics Letters, 2015, 106(8): 081105. doi: 10.1063/1.4913679

    CrossRef Google Scholar

    [67] Kleinman D A. Nonlinear dielectric polarization in optical media[J]. Physical Review, 1962, 126(6): 1977-1979. doi: 10.1103/PhysRev.126.1977

    CrossRef Google Scholar

    [68] Pershan P S. Nonlinear optical properties of solids: energy considerations[J]. Physical Review, 1963, 130(3): 919-929. doi: 10.1103/PhysRev.130.919

    CrossRef Google Scholar

    [69] D'Aguanno G, Centini M, Scalora M, et al. Photonic band edge effects in finite structures and applications to χ2 interactions[J]. Physical Review E, 2001, 64(1): 016609. doi: 10.1103/PhysRevE.64.016609

    CrossRef Google Scholar

    [70] Shi Jianping, Luo Xiangang, Chen Xunan, et al. Analysis of optical SHG in photonic crystal consisting of centro-symmetric dielectric[J]. Optics Express, 2004, 12(22): 5307-5313. doi: 10.1364/OPEX.12.005307

    CrossRef Google Scholar

    [71] Luo Xiangang, Ishihara T. Engineered second harmonic generation in photonic-crystal slabs consisting of centrosymmetric materials[J]. Advanced Functional Materials, 2004, 14(9): 905-912. doi: 10.1002/(ISSN)1616-3028

    CrossRef Google Scholar

    [72] Galli M, Gerace D, Welna K, et al. Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities[J]. Optics Express, 2010, 18(25): 26613-26624. doi: 10.1364/OE.18.026613

    CrossRef Google Scholar

    [73] Soljačić M, Ibanescu M, Johnson S G, et al. Optimal bistable switching in nonlinear photonic crystals[J]. Physical Review E, 2002, 66(5): 055601.

    Google Scholar

    [74] Notomi M, Shinya A, Mitsugi S, et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities[J]. Optics Express, 2005, 13(7): 2678-2687. doi: 10.1364/OPEX.13.002678

    CrossRef Google Scholar

    [75] Almeida V R, Lipson M. Optical bistability on a silicon chip[J]. Optics Letters, 2004, 29(20): 2387-2389. doi: 10.1364/OL.29.002387

    CrossRef Google Scholar

    [76] Yang Xiaodong, Husko C, Wong C W, et al. Observation of femtojoule optical bistability involving Fano resonances in high- Q/Vm, silicon photonic crystal nanocavities[J]. Applied Physics Letters, 2007, 91(5): 051113. doi: 10.1063/1.2757607

    CrossRef Google Scholar

    [77] Zhang Yong, Li Danping, Zeng Cheng, et al. Ultralow power nonlinear response in an Si photonic crystal nanocavity[J]. IEEE Photonics Journal, 2013, 5(4): 6601409. doi: 10.1109/JPHOT.2013.2273734

    CrossRef Google Scholar

    [78] Zhang Yong, Li Danping, Zeng Cheng, et al. Low power and large modulation depth optical bistability in an Si photonic crystal L3 cavity[J]. IEEE Photonics Technology Letters, 2014, 26(23): 2399-2402. doi: 10.1109/LPT.2014.2358254

    CrossRef Google Scholar

    [79] Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity[J]. Nature Photonics, 2010, 4(7): 477-483. doi: 10.1038/nphoton.2010.89

    CrossRef Google Scholar

    [80] Morita K, Takahashi T, Kanbara T, et al. Large optical Kerr signal of GaAs/AlAs multilayer cavity with InAs quantum dots embedded in strain-relaxed barriers[J]. Physica E: Low-dimensional Systems and Nanostructures, 2010, 42(10): 2505-2508. doi: 10.1016/j.physe.2009.12.035

    CrossRef Google Scholar

    [81] Lyubchanskii I L, Dadoenkova N N, Zabolotin A E, et al. Optical bistability in one-dimensional magnetic photonic crystal with two defect layers[J]. Journal of Applied Physics, 2008, 103(7): 07B321. doi: 10.1063/1.2832351

    CrossRef Google Scholar

    [82] Hu Xiaoyong, Jiang Ping, Ding Chengyuan, et al. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity[J]. Nature Photonics, 2008, 2(3): 185-189. doi: 10.1038/nphoton.2007.299

    CrossRef Google Scholar

    [83] Sodagar M, Miri M, Eftekhar A A, et al. Optical bistability in a one-dimensional photonic crystal resonator using a reverse-biased pn-junction[J]. Optics Express, 2015, 23(3): 2676-2685. doi: 10.1364/OE.23.002676

    CrossRef Google Scholar

    [84] Aas S, Müstecaplıoğlu Ö E. Optical bistability in one-dimensional doped photonic crystals with spontaneously generated coherence[J]. Physical Review A, 2013, 88(5): 053846. doi: 10.1103/PhysRevA.88.053846

    CrossRef Google Scholar

    [85] Asadpour S H, Solookinejad G, Panahi M, et al. Managing optical bistability and multistability by embedding quantum dot nanostructures in a photonic crystal[J]. The European Physical Journal Plus, 2016, 131(11): 406. doi: 10.1140/epjp/i2016-16406-x

    CrossRef Google Scholar

    [86] Moslemi F, Jamshidi-Ghaleh K. Electrically tunable optical bistability based on one-dimensional photonic crystals with nonlinear nanocomposite materials[J]. Journal of Applied Physics, 2016, 119(9): 093101. doi: 10.1063/1.4942866

    CrossRef Google Scholar

    [87] 李淳飞.光学双稳态研究20年[J].物理, 1996, 25(5): 267-272.

    Google Scholar

    [88] 龚旗煌.超快速低功率光子晶体全光开关研究进展[J].中国基础科学, 2009, 11(1): 13-15.

    Google Scholar

    Gong Qihuang. Progress of ultrafast low-power photonic crystal all-optical switching[J]. China Basic Science, 2009, 11(1): 13-15.

    Google Scholar

    [89] Nozaki K, Lacraz A, Shinya A, et al. All-optical switching for 10-Gb/s packet data by using an ultralow-power optical bistability of photonic-crystal nanocavities[J]. Optics Express, 2015, 23(23): 30379-30392. doi: 10.1364/OE.23.030379

    CrossRef Google Scholar

    [90] Dolev I, Arie A. Three wave mixing of airy beams in a quadratic nonlinear photonic crystals[J]. Applied Physics Letters, 2010, 97(17): 171102. doi: 10.1063/1.3504247

    CrossRef Google Scholar

    [91] Kanakis P, Kamalakis T, Sphicopoulos T. Designing photonic crystal waveguides for broadband four-wave mixing applications[J]. Optics Letters, 2015, 40(6): 1041-1044. doi: 10.1364/OL.40.001041

    CrossRef Google Scholar

    [92] Cerjan A, Raman A, Fan Shanhui. Exceptional contours and band structure design in parity-time symmetric photonic crystals[J]. Physical Review Letters, 2016, 116(20): 203902. doi: 10.1103/PhysRevLett.116.203902

    CrossRef Google Scholar

    [93] Mock A. Parity-time-symmetry breaking in two-dimensional photonic crystals: square lattice[J]. Physical Review A, 2016, 93(6): 063812. doi: 10.1103/PhysRevA.93.063812

    CrossRef Google Scholar

    [94] Young A B, Thijssen A C T, Beggs D M, et al. Polarization engineering in photonic crystal waveguides for spin-photon entanglers[J]. Physical Review Letters, 2015, 115(15): 153901. doi: 10.1103/PhysRevLett.115.153901

    CrossRef Google Scholar

    [95] Matsuda N, Takesue H. Generation and manipulation of entangled photons on silicon chips[J]. Nanophotonics, 2016, 5(3): 440-455.

    Google Scholar

  • Abstract:Photonic integrated circuit (or chip) is the foundation of the ultra-high speed and large capacity information network in the future. This leads to a hot point of optical research in recent years that is how to excite the nonlinear optical effect in the case of low threshold (mW or pJ order) and small scale (μm or less). As is known to all, the nonlinear optical effect is too weak to be excited under normal conditions. That is why the nonlinear optics failed to develop before the appearance of laser. In other words, how to excite the nonlinear optical effect in the case of low threshold and small scale is difficult. In recent years, researchers found that the nonlinear optical effect could be greatly enhanced in the photonic crystals (PCs) which are expected to solve this problem.

    PC is a artificial periodic nanostructure composed of periodic dielectric. The most typical feature of PC is photonic band gap (PBG). Photons either propagate through this structure or not, depending on their wavelengths in or out of the PBG. The motion of photons in PCs is much the same way as that ionic lattices affect electrons in solids. So PC is also known as “semiconductor crystal for photons”. Thanks to the PBG, the nonlinear optical effects in PCs are more abundant and outstanding. For instance, the nanocavity based on the PCs can get the extremely high Q-factor leading to the low threshold and efficient nonlinear optical effect. Again, at the edge of PBG, the electromagnetic field is violently modulated leading to the huge electric field gradient that creates the conditions for high-order nonlinear effect. Additionally, the periodic optical nanostructure of PCs provides the favorable term for nonlinear enhancement,such as the quasi phase matching that is necessary for second harmonic generation. Moreover, the electromagnetic field resonance and coupling among the discrete components of PCs, nano-waveguide and nano-cavity etc. can be used as the powerful methods to custom-tailor the nonlinear optical effect.

    More and more nonlinear effects have been found in PCs, such as photonic crystal slow light, the band gap soliton, electromagnetic induction transparency, second harmonic generation, and optical bistability. This paper focuses on the summaries of some major achievements and advances about PCs that would promote the nonlinear photonic integrated devices. Certainly, the related applications are introduced and the future outlook of the nonlinear PCs is discussed.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(20)

Tables(1)

Article Metrics

Article views(10113) PDF downloads(4060) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint