Li Can, Cai Dongmei, Jia Peng, et al. Research on reconstruction of atmospheric turbulence wavefront compressed sensing measurement[J]. Opto-Electronic Engineering, 2018, 45(4): 170617. doi: 10.12086/oee.2018.170617
Citation: Li Can, Cai Dongmei, Jia Peng, et al. Research on reconstruction of atmospheric turbulence wavefront compressed sensing measurement[J]. Opto-Electronic Engineering, 2018, 45(4): 170617. doi: 10.12086/oee.2018.170617

Research on reconstruction of atmospheric turbulence wavefront compressed sensing measurement

    Fund Project: Supported by Young Scientist Funds of National Natural Science Foundation of China (11503018) and Joint Research Fund in Astronomy (U1631133)
More Information
  • Compressed sensing technology for atmospheric turbulence wavefront slope measurement can greatly improve the wavefront signal measurement speed, while reducing the pressure of wavefront measurement system hardware. Different from the existing wavefront slope measurement method, the compressed sensing wavefront measurement increase a process which from sparse measurement of wavefront slope value to the reconstruction of the wavefront slope signal. Therefore, a fast and accurate wavefront slope reconstruction algorithm is needed if the compressed sensing technology is used for wavefront measurement. Smoothed L0 Norm (SL0) algorithm is an optimized iterative reconstruction algorithm with approximate L0 norm estimation, and compared with other algorithms, it is not necessary to know the sparsity of the signal in advance, and the calculation is low and the estimation accuracy is high. Based on the SL0 algorithm, this paper implements a subregion parallel algorithm-Block-Smoothed L0 Norm (B-SL0) which can quickly and accurately reconstruct the signal by measuring the wavefront slope signal in subarea and parallel operations through theoretical analysis and experiments. The experimental results show that B-SL0 is significantly better than other existing reconstruction algorithms in the calculation time and accuracy, and explore the feasibility of compressed sensing technology for measurement of atmospheric turbulence wavefront preliminarily.
  • 加载中
  • [1] 林旭东, 薛陈, 刘欣悦, 等.自适应光学波前校正器技术发展现状[J].中国光学, 2012, 5(4): 337–351.

    Google Scholar

    Lin X D, Xue C, Liu X Y, et al. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics, 2012, 5(4): 337–351.

    Google Scholar

    [2] 鲜浩. 自适应光学系统波前传感器设计与优化[D]. 成都: 电子科技大学, 2008.

    Google Scholar

    Xian H. Design and optimization of wavefront sensor for adaptive optics system[D]. Chengdu: University of Electronic Science and Technology of China, 2008.

    Google Scholar

    [3] 牛超君, 于诗杰, 韩香娥.无波前探测自适应光学对光通信性能影响分析[J].激光与光电子学进展, 2015, 52(8): 080102.

    Google Scholar

    Niu C J, Yu S J, Han X E. Analysis about effect of wavefront sensorless adaptive optics on optical communication[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080102.

    Google Scholar

    [4] 张强, 姜文汉, 许冰.用于Hartmann-Shack波前探测器的区域法算法研究[J].强激光与粒子束, 1998, 10(2): 229–233.

    Google Scholar

    Zhang Q, Jiang W H, Xu B. Study of zonal wavefront reconstruction adapting for Hartmann-Shack wavefront sensor[J]. High Power Laser and Particle Beams, 1998, 10(2): 229–233.

    Google Scholar

    [5] Yazdani R, Fallah H. Wavefront sensing for a Shack–Hartmann sensor using phase retrieval based on a sequence of intensity patterns[J]. Applied Optics, 2017, 56(5): 1358–1364. doi: 10.1364/AO.56.001358

    CrossRef Google Scholar

    [6] Rostami M, Michailovich O, Wang Z. Image deblurring using derivative compressed sensing for optical imaging application[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3139–3149. doi: 10.1109/TIP.2012.2190610

    CrossRef Google Scholar

    [7] Polans J, Mcnabb R P, Izatt J A, et al. Compressed wavefront sensing[J]. Optics Letters, 2014, 39(5): 1189–1192. doi: 10.1364/OL.39.001189

    CrossRef Google Scholar

    [8] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582

    CrossRef Google Scholar

    [9] 任越美, 张艳宁, 李映.压缩感知及其图像处理应用研究进展与展望[J].自动化学报, 2014, 40(8): 1563–1575.

    Google Scholar

    Ren Y M, Zhang Y N, Li Y. Advances and perspective on compressed sensing and application on image processing[J]. Acta Automatica Sinia, 2014, 40(8): 1563–1575.

    Google Scholar

    [10] Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549–571. doi: 10.1016/j.sigpro.2005.05.029

    CrossRef Google Scholar

    [11] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083

    CrossRef Google Scholar

    [12] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425. doi: 10.1109/TIT.2006.885507

    CrossRef Google Scholar

    [13] Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082

    CrossRef Google Scholar

    [14] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108

    CrossRef Google Scholar

    [15] Yin W, Morgan S, Yang J F, et al. Practical compressive sensing with Toeplitz and circulant matrices[J]. Proceedings of SPIE, 2010, 7744: 77440K.

    Google Scholar

    [16] Applebaum L, Howard S D, Searle S, et al. Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery[J]. Applied & Computational Harmonic Analysis, 2009, 26(2): 283–290.

    Google Scholar

    [17] Mohimani H, Babaie-zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed 10 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289–301. doi: 10.1109/TSP.2008.2007606

    CrossRef Google Scholar

    [18] Mohimani G H, Babaie-zadeh M, Jutten C. Fast sparse representation based on smoothed l0 norm[C]//Proceedings of the 7th International Conference on Independent Component Analysis and Signal Separation. Springer-Verlag, 2007: 389–396.

    Google Scholar

    [19] Candes, Emmanuel J. The restricted isometry property and its implications for compressed sensing[J]. Comptes rendus-Mathematique, 2008, 346(9): 589–592.

    Google Scholar

    [20] Cai T T, Wang L, Xu G W. New bounds for restricted isometry constants[J]. IEEE Transactions on Information Theory, 2010, 56(9): 4388–4394. doi: 10.1109/TIT.2010.2054730

    CrossRef Google Scholar

    [21] 蔡冬梅, 王昆, 贾鹏, 等.功率谱反演大气湍流随机相位屏采样方法的研究.物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217

    CrossRef Google Scholar

    Cai D M, Wang K, Jia P, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Journal of physics, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217

    CrossRef Google Scholar

    [22] 张智露. 室内大气湍流模拟系统的研究[D]. 太原: 太原理工大学, 2017.

    Google Scholar

    Zhang Z L. Research on the simulation system of indoor atmospheric turbulence[D]. Taiyuan: Taiyuan University of Technology, 2017.

    Google Scholar

    [23] 李玉杰, 朱文越, 饶瑞中.非Kolmogorov大气湍流随机相位屏模拟[J].红外与激光工程, 2016, 45(12): 1211001.

    Google Scholar

    Li Y J, Zhu W Y, Rao R Z. Simulation of random phase screen of non-Kolmogorov atmospheric turbulence[J]. Infrared and Laser Engineering, 2016, 45(12): 1211001.

    Google Scholar

  • Overview: Compressed sensing technology for atmospheric turbulence wavefront slope measurement can greatly improve the wavefront signal measurement speed, while reducing the pressure of wavefront measurement system hardware. Different from the existing wavefront slope measurement method, the compressed sensing wavefront measurement increase a process from sparse measurement of wavefront slope value to the reconstruction of the wavefront slope signal, which will increase the wavefront data processing time. So this means putting forward higher demands on the compressed sensing reconstruction algorithm. Therefore, it is necessary to reconstruct wavefront slope quickly and accurately with compressed sensing technology for wavefront measurement.

    Smoothed L0 Norm (SL0) algorithm is an optimal iterative reconstruction algorithm with approximate L0 norm estimation. Compared with other algorithms, it does not need to know the sparsity of the signal in advance, and it has lower computational complexity and higher estimation accuracy. Because the SL0 algorithm is based on one-dimensional signal reconstruction, while the method of column by line serial reconstruction is used for two-dimensional signals such as wavefront slope. On the one hand, it belongs to serial operation and increases the reconstruction time, on the other hand, it destorys the relationship between the columns of the wavefront slope signal, which reduces the wavefront slope reconstruction precision.

    Aiming at the shortcomings of its reconstruction accuracy and running speed, this paper implements a subregion parallel algorithm—Block-Smoothed L0 Norm (B-SL0), which can quickly and accurately reconstruct the signal by measuring the wavefront slope signal in subarea and parallel operations through theoretical analysis and simulation experiments based on the SL0 algorithm the wavefront derivative compressed sensing (DCS). The B-SL0 algorithm uses subregional parallel operation, which not only reduces the running time of the reconstruction algorithm, but also reduces the damage to the internal information of the wavefront slope signal and further improves the reconstruction accuracy of the wavefront phase.

    The simulation results show that the B-SL0 algorithm is superior to the SL0 algorithm in terms of the running time of the wavefront slope reconstruction, and the wavefront phase accuracy restored by the reconstructed wavefront slope is better than that of the SL0 algorithm. In addition, compared with some classical algorithms, such as OMP, SP and BP, the B-SL0 algorithm in the same conditions not only greatly improves the running time of the wavefront slope reconstruction, and the reconstructed wavefront slope signal can restore the atmospheric turbulence wavefront phase better, which reflects the performance of the B-SL0 algorithm is good in reconstructing phase screen.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(8553) PDF downloads(3115) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint