Cao G Y, Gan X S, Lin H, Jia B H. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron Adv 1, 180012 (2018). doi: 10.29026/oea.2018.180012
Citation: Cao G Y, Gan X S, Lin H, Jia B H. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron Adv 1, 180012 (2018). doi: 10.29026/oea.2018.180012

Original Article Open Access

An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory

More Information
  • Graphene oxide (GO) ultrathin flat lenses have provided a new and viable solution to achieve high resolution, high efficiency, ultra-light weight, integratable and flexible optical systems. Current GO lenses are designed based on the Fresnel diffraction model, which uses a paraxial approximation for low numerical aperture (NA) focusing process. Herein we develop a lens design method based on the Rayleigh-Sommerfeld (RS) diffraction theory that is able to unambiguously determine the radii of each ring without the optimization process for the first time. More importantly, the RS design method is able to accurately design GO lenses with arbitrary NA and focal length. Our design is experimentally confirmed by fabricating high NA GO lenses with both short and long focal lengths. Compared with the conventional Fresnel design methods, the differences in ring positions and the resulted focal length are up to 13.9% and 9.1%, respectively. Our method can be further applied to design high performance flat lenses of arbitrary materials given the NA and focal length requirements, including metasurfaces or other two-dimensional materials.
  • 加载中
  • [1] Mahajan V N. Aberration Theory Made Simple (SPIE Optical Engineering Press, Bellingham, WA, 1991).

    Google Scholar

    [2] Lu D, Lin Z W. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3, 1205 (2012). doi: 10.1038/ncomms2176

    CrossRef Google Scholar

    [3] Liu Z W, Steele J M, Srituravanich W, Pikus Y, Sun C et al. Focusing surface plasmons with a plasmonic lens. Nano Lett 5, 1726-1729 (2005). doi: 10.1021/nl051013j

    CrossRef Google Scholar

    [4] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005). doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [5] Verslegers L, Catrysse P B, Yu Z, White J S, Barnard E S et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9, 235-238 (2009). doi: 10.1021/nl802830y

    CrossRef Google Scholar

    [6] Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139-150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [7] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [8] Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12, 4932-4936 (2012). doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [9] Rogers E T F, Lindberg J, Roy T, Savo S, Chad J E et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater 11, 432-435 (2012). doi: 10.1038/nmat3280

    CrossRef Google Scholar

    [10] Qin F, Huang K, Wu J F, Teng J H, Qiu C W et al. A supercritical lens optical label-free microscopy: Sub-diffraction resolution and ultra-long working distance. Adv Mater 29, 1602721 (2017). doi: 10.1002/adma.201602721

    CrossRef Google Scholar

    [11] Zheng X R, Jia B H, Lin H, Qiu L, Li D et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015). doi: 10.1038/ncomms9433

    CrossRef Google Scholar

    [12] Gao H W, Hyun J K, Lee M H, Yang J C, Lauhon L J et al. Broadband plasmonic microlenses based on patches of nanoholes. Nano Lett 10, 4111-4116 (2010). doi: 10.1021/nl1022892

    CrossRef Google Scholar

    [13] Wang Y X, Yun W B, Jacobsen C. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424, 50-53 (2003). doi: 10.1038/nature01756

    CrossRef Google Scholar

    [14] Wang S C, Ouyang X Y, Feng Z W, Gao Y Y, Gu M et al. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv 1, 170002 (2018).

    Google Scholar

    [15] Zheng X R, Lin H, Yang T S, Jia B H. Laser trimming of graphene oxide for functional photonic applications. J Phys D: Appl Phys 50, 074003 (2017). doi: 10.1088/1361-6463/aa54e9

    CrossRef Google Scholar

    [16] Ojeda-Casta eda J, Gómez-Reino C. Selected Papers on Zone Plates (SPIE Press, Bellingham, WA, 1996).

    Google Scholar

    [17] Cao Q, Jahns J. Modified Fresnel zone plates that produce sharp Gaussian focal spots. J Opt Soc Am A 20, 1576-1581 (2003). doi: 10.1364/JOSAA.20.001576

    CrossRef Google Scholar

    [18] Yu Y H, Tian Z N, Jiang T, Niu L G, Gao B R. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing. Opt Commun 362, 69-72 (2016). doi: 10.1016/j.optcom.2015.08.039

    CrossRef Google Scholar

    [19] Wang X K, Xie Z W, Sun W F, Feng S F, Cui Y et al. Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate. Opt Lett 38, 4731-4734 (2013). doi: 10.1364/OL.38.004731

    CrossRef Google Scholar

    [20] Saavedra G, Furlan W D, Monsoriu J A. Fractal zone plates. Opt Lett 28, 971-973 (2003). doi: 10.1364/OL.28.000971

    CrossRef Google Scholar

    [21] Solak H H, David C, Gobrecht J. Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography. Appl Phys Lett 85, 2700-2702 (2004). doi: 10.1063/1.1803937

    CrossRef Google Scholar

    [22] Kunz K S, Luebbers R J. The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Roca Raton, FL, 1993).

    Google Scholar

    [23] Taflove A. Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures. Wave Motion 10, 547-582 (1988). doi: 10.1016/0165-2125(88)90012-1

    CrossRef Google Scholar

    [24] Zhang H R, Zhang F C, Liang Y, Huang X G, Jia B H. Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry. J Phys D: Appl Phys 50, 165104 (2017). doi: 10.1088/1361-6463/aa613a

    CrossRef Google Scholar

    [25] Byrnes S J, Lenef A, Aieta F, Capasso F. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express 24, 5110-5124 (2016). doi: 10.1364/OE.24.005110

    CrossRef Google Scholar

    [26] Zhuang Z F, Yu F H. Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum. Opt Laser Technol 60, 27-33 (2014). doi: 10.1016/j.optlastec.2013.12.021

    CrossRef Google Scholar

    [27] Huang K, Shi P, Kang X L, Zhang X B, Li Y P. Design of DOE for generating a needle of a strong longitudinally polarized field. Opt Lett 35, 965-967(2010). doi: 10.1364/OL.35.000965

    CrossRef Google Scholar

    [28] Gu M. Advanced Optical Imaging Theory (Springer, Berlin Heidelberg, 2000).

    Google Scholar

    [29] Goodman J W. Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

    Google Scholar

    [30] Hecht E. Optics 4th ed (Addison-Wesley, Boston, 2002).

    Google Scholar

    [31] Zheng X R, Jia B H, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26, 2699-2703 (2014). doi: 10.1002/adma.201304681

    CrossRef Google Scholar

    [32] Li X P, Zhang Q M, Chen X, Gu M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep 3, 2819 (2013). doi: 10.1038/srep02819

    CrossRef Google Scholar

    [33] Yang T S, Lin H, Jia B H. Two-dimensional material functional devices enabled by direct laser fabrication. Front Optoelectron 11, 2-22 (2018). doi: 10.1007/s12200-017-0753-1

    CrossRef Google Scholar

  • Supplementary information for An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(15557) PDF downloads(4162) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint