Xu Danyang, Du Chunnian. Design and implementation of high sensitivity micro spectrometer based on area array CCD[J]. Opto-Electronic Engineering, 2018, 45(11): 180152. doi: 10.12086/oee.2018.180152
Citation: Xu Danyang, Du Chunnian. Design and implementation of high sensitivity micro spectrometer based on area array CCD[J]. Opto-Electronic Engineering, 2018, 45(11): 180152. doi: 10.12086/oee.2018.180152

Design and implementation of high sensitivity micro spectrometer based on area array CCD

    Fund Project: Supported by National Natural Science Foundation of China (11604295) and the Zhejiang Provincial Natural Science Foundation (LQ17C100002)
More Information
  • The area array CCD has the advantages of high sensitivity and wide dynamic range, which is suitable for fluorescence measurement, DNA sequencing, Raman spectroscopy and low photometric detection. Therefore, it is of great practical value to develop high sensitivity micro fiber spectrometer based on area array CCD. The optical resolution of 1 nm is obtained by using an optimized cross-asymmetric Czerny-Turner optical system structure. By combining the design methods of DC-DC and LDO, the complex power system with 6 voltage outputs is realized through USB power supply. The CCD drive timing design is achieved by Verilog HDL language and the signals are output through Altera's EPM7064 chip. After the CCD output video signal is converted by high-speed 16 bit AD chip AD9826, digital signals are stored in a separate static RAM, allowing dacquisition and reading of data to be separated. The sensitivity of designed micro-high sensitivity spectrometer is 11 times of that of spectrometer based on linear array CCD. Furthermore, it has a dynamic range of 20000: 1 and a signal-to-noise ratio of 500: 1. This work greatly improves the microfiber spectrometer performance.
  • 加载中
  • [1] 陈至坤, 王淑香, 王玉田, 等.光栅光谱仪光路结构的设计[J].应用光学, 2015, 36(5): 704-708.

    Google Scholar

    Chen Z K, Wang S X, Wang Y T, et al. Design of grating spectrometer optical structure[J]. Journal of Applied Optics, 2015, 36(5): 704-708.

    Google Scholar

    [2] 童建平, 高建勋, 汪飞, 等.微型光谱仪中传感器S11639的非线性校正[J].光电工程, 2017, 44(11): 1101-1106. doi: 10.3969/j.issn.1003-501X.2017.11.010

    CrossRef Google Scholar

    Tong J P, Gao J X, Wang F, et al. Nonlinear correction of the sensor S11639 in mini-spectrometer[J]. Opto-Electronic Engineering, 2017, 44(11): 1101-1106. doi: 10.3969/j.issn.1003-501X.2017.11.010

    CrossRef Google Scholar

    [3] 张文理, 田逢春, 赵贞贞, 等.空间外差光谱仪的干涉图校正[J].光电工程, 2017, 44(5): 488-497. doi: 10.3969/j.issn.1003-501X.2017.05.003

    CrossRef Google Scholar

    Zhang W L, Tian F C, Zhao Z Z, et al. Interferogram correction of spatial heterodyne spectrometer[J]. Opto-Electronic Engineering, 2017, 44(5): 488-497. doi: 10.3969/j.issn.1003-501X.2017.05.003

    CrossRef Google Scholar

    [4] 夏果, 吴骕, 黄禅, 等.交叉非对称型Czerny-Turner光谱仪光学系统设计[J].光子学报, 2017, 46(4): 0422003. doi: 10.3788/gzxb20174604.0422003

    CrossRef Google Scholar

    Xia G, Wu S, Huang C, et al. Design of crossed-asymmetric Czerny-Turner spectrometer optical system[J]. Acta Photonica Sinica, 2017, 46(4): 0422003. doi: 10.3788/gzxb20174604.0422003

    CrossRef Google Scholar

    [5] 陈谭轩, 杨怀栋, 陈科新, 等.宽光谱Czerny-Turner光谱仪中的彗差与分辨率[J].光谱学与光谱分析, 2010, 30(6): 1692-1696. doi: 10.3964/j.issn.1000-0593(2010)06-1692-05

    CrossRef Google Scholar

    Chen T X, Yang H D, Chen K X, et al. Coma and resolution in wide spectral region Czerny-Turner spectrometer[J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1692-1696. doi: 10.3964/j.issn.1000-0593(2010)06-1692-05

    CrossRef Google Scholar

    [6] 谢锐, 裴东兴, 姚琴琴.高频信号动态测试中的信号完整性分析[J].仪器仪表学报, 2017, 38(3): 773-779. doi: 10.3969/j.issn.0254-3087.2017.03.033

    CrossRef Google Scholar

    Xie R, Pei D X, Yao Q Q. Signal integrity analysis in high-frequency signal dynamic test[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 773-779. doi: 10.3969/j.issn.0254-3087.2017.03.033

    CrossRef Google Scholar

    [7] 冯帆, 段发阶, 伯恩, 等.一种小型中阶梯光栅光谱仪的光学设计[J].光电工程, 2014, 41(7): 20-25. doi: 10.3969/j.issn.1003-501X.2014.07.004

    CrossRef Google Scholar

    Feng F, Duan F J, Bo E, et al. An optical design of small-size echelle spectrograph[J]. Opto-Electronic Engineering, 2014, 41(7): 20-25. doi: 10.3969/j.issn.1003-501X.2014.07.004

    CrossRef Google Scholar

    [8] 葛明锋, 亓洪兴, 王雨曦, 等.高分辨力成像光谱仪光谱定标研究[J].光电工程, 2015, 42(12): 14-19. doi: 10.3969/j.issn.1003-501X.2015.12.003

    CrossRef Google Scholar

    Ge M F, Qi H X, Wang Y X, et al. Spectral calibration for the high spectral resolution imager[J]. Opto-Electronic Engineering, 2015, 42(12): 14-19. doi: 10.3969/j.issn.1003-501X.2015.12.003

    CrossRef Google Scholar

    [9] 黄元申, 苏仰庆, 盛斌, 等.高分辨力凹面光栅光谱仪的优化设计[J].光电工程, 2015, 42(12): 1-7. doi: 10.3969/j.issn.1003-501X.2015.12.001

    CrossRef Google Scholar

    Huang Y S, Su Y Q, Sheng B, et al. Optimization design for the high resolution concave grating spectrometer[J]. Opto-Electronic Engineering, 2015, 42(12): 1-7. doi: 10.3969/j.issn.1003-501X.2015.12.001

    CrossRef Google Scholar

    [10] Austin D R, Witting T, Walmsley I A. Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors[J]. Applied Optics, 2009, 48(19): 3846-3853. doi: 10.1364/AO.48.003846

    CrossRef Google Scholar

    [11] 张智辉, 田地, 杨义先.线阵CCD驱动电路设计的几种方法[J].仪表技术与传感器, 2004(6): 32-33, 52. doi: 10.3969/j.issn.1002-1841.2004.06.014

    CrossRef Google Scholar

    Zhang Z H, Tian D, Yang Y X. Methods for design of linear CCD driving circuit[J]. Instrument Technique and Sensor, 2004(6): 32-33, 52. doi: 10.3969/j.issn.1002-1841.2004.06.014

    CrossRef Google Scholar

    [12] 秦莉, 董丽丽, 许文海, 等. CCD图像灰度与照度的转换标定方法[J].仪器仪表学报, 2015, 36(3): 639-644. doi: 10.19650/j.cnki.cjsi.2015.03.020

    CrossRef Google Scholar

    Qin L, Dong L L, Xu W H, et al. Method for conversion calibration between CCD image gray value and illumination[J]. Chinese Journal of Scientific Instrument, 2015, 36(3): 639-644. doi: 10.19650/j.cnki.cjsi.2015.03.020

    CrossRef Google Scholar

    [13] 杨东东, 马红光, 徐东辉, 等.模拟电路参数变化检测最优混沌激励设计[J].仪器仪表学报, 2015, 36(4): 943-950.

    Google Scholar

    Yang D D, Ma H G, Xu D H, et al. Design of the optimal chaotic excitation for the parameter change detection of analog circuit[J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 943-950.

    Google Scholar

    [14] Wang R M, Xu D, Jiang Y P, et al. Innovation application of area array CCD based on CPLD[J]. Proceedings of the SPIE, 2006, 6150: 615041. doi: 10.1117/12.676519

    CrossRef Google Scholar

    [15] 徐丹阳, 童建平, 高建勋, 等.光纤光谱仪光路模拟优化及波长标定[J].中国激光, 2015, 42(5): 0516003.

    Google Scholar

    Xu D Y, Tong J P, Gao J X, et al. Fiber spectrometer optical simulation optimization and calibration[J]. Chinese Journal of Lasers, 2015, 42(5): 0516003.

    Google Scholar

    [16] 乔道鄂, 谷玉海, 徐小力.光栅光谱仪波长校准算法研究[J].光子学报, 2009, 38(9): 2283-2287.

    Google Scholar

    Qiao D E, Gu Y H, Xu X L. Wavelength calibration algorithm in grating spectrometer[J]. Acta Photonica Sinica, 2009, 38(9): 2283-2287.

    Google Scholar

    [17] 陈少杰, 崔继承, 刘玉娟, 等.高分辨率中阶梯光栅光谱仪精确装调与标定[J].光谱学与光谱分析, 2012, 32(8): 2280-2285. doi: 10.3964/j.issn.1000-0593(2012)08-2280-06

    CrossRef Google Scholar

    Chen S J, Cui J C, Liu Y J, et al. A method of precise adjustment and calibration for high-resolution echelle spectrograph[J]. Spectroscopy and Spectral Analysis, 2012, 32(8): 2280-2285. doi: 10.3964/j.issn.1000-0593(2012)08-2280-06

    CrossRef Google Scholar

    [18] 武旭华, 朱永田, 王磊.高分辨率阶梯光栅光谱仪的光学设计[J].光学 精密工程, 2003, 11(5): 442-447.

    Google Scholar

    Wu X H, Zhu Y T, Wang L. Optical design of high resolution echelle spectrograph[J]. Optics and Precision Engineering, 2003, 11(5): 442-447.

    Google Scholar

    [19] 施建华, 伏思华, 谢文科.光栅光谱仪光谱响应误差校正[J].中国光学, 2014, 7(3): 483-490.

    Google Scholar

    Shi J H, Fu S H, Xie W K. Error correction of spectral response characteristic of grating spectrometer[J]. Chinese Optics, 2014, 7(3): 483-490.

    Google Scholar

    [20] 陈思, 柯福顺, 乐永康.光栅光谱仪的标定[J].物理实验, 2012, 32(3): 44-46. doi: 10.3969/j.issn.1005-4642.2012.03.012

    CrossRef Google Scholar

    Chen S, Ke F S, Le Y K. Calibration of grating spectrometer[J]. Physics Experimentation, 2012, 32(3): 44-46. doi: 10.3969/j.issn.1005-4642.2012.03.012

    CrossRef Google Scholar

  • Overview: Spectrometer is animportant instrument for spectral detection. It is used to measure thecomposition and structure of a substance. It has the advantages of fastmeasuring speed, high accuracy and nondestructive measurement. Traditionalspectroscopic instruments, with their huge volume and high price, almost limitsuch instruments to the laboratory. In recent years, on the one hand, theurgent needs of biomedicine, science and technology agriculture and otherapplications require analytical instruments to develop in the direction ofminiaturization and intelligence. On the other hand, it is possible to make thespectrometer miniature, thanks to the development of microelectromechanical systems(MEMS) and the mass production of optical fiber devices, as well as theappearance of micro optoelectronic detection devices.

    Comparedto the linear array CCD, the area array CCD is more sensitive to the spectralresponse, which is very suitable for the applications of high quantumefficiency, such as pesticide residue detection, DNA detection, fluorescencedetection and Raman spectrum detection. Therefore, the development of highlysensitive micro fiber spectrometer can broaden the applications ofspectrometers, which is of great practical significance. At present, the technologyof micro spectrometer is mostly used at home and abroad. The first method is touse MEMS technology, two element optics and integrated optics. The secondmethod is to use the miniaturization of components and systems, which is themainstream method at present. The American Brimrose company and Jet Propulsionlaboratory developed a micro crystal NIR spectrometer based on acousto-optictunable filter (AOTF) with a new type of filter technology, with a resolutionof 0.0125 nm. Relevant research institutes in China include research institutessuch as Zhejiang University, Chongqing University and Changchun Institute ofOptical Precision Machinery and Physics, CAS.

    Theoptical resolution of 1 nm is obtained by using an optimized cross-asymmetricCzerny-Turner optical system structure. By combining the design methods ofDC-DC and LDO, the complex power system with 6 voltage outputs is realized throughUSB power supply. The CCD drive timing design is achieved by Verilog HDLlanguage and the signals are output through Altera's EPM7064 chip. After theCCD output video signal is converted by high-speed 16 bit AD chip AD9826, digitalsignals are stored in a separate static RAM, allowing data acquisition andreading to be separated. The sensitivity of the designed micro-high sensitivityspectrometer is 11 times of that of spectrometer based on linear array CCD. Furthermore,it has a dynamic range of 20000: 1 and a signal-to-noise ratio of 500: 1. Thiswork greatly improves the microfiber spectrometer performance.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(11267) PDF downloads(3447) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint