宽光谱大面积多阶梯光场光谱感光仪

李超洋, 黄元申, 盛斌, 等. 宽光谱大面积多阶梯光场光谱感光仪[J]. 光电工程, 2019, 46(2): 180365. doi: 10.12086/oee.2019.180365
引用本文: 李超洋, 黄元申, 盛斌, 等. 宽光谱大面积多阶梯光场光谱感光仪[J]. 光电工程, 2019, 46(2): 180365. doi: 10.12086/oee.2019.180365
Li Chaoyang, Huang Yuanshen, Sheng Bin, et al. Spectrosensitometer with wide spectrum, large scale and multistep optical field[J]. Opto-Electronic Engineering, 2019, 46(2): 180365. doi: 10.12086/oee.2019.180365
Citation: Li Chaoyang, Huang Yuanshen, Sheng Bin, et al. Spectrosensitometer with wide spectrum, large scale and multistep optical field[J]. Opto-Electronic Engineering, 2019, 46(2): 180365. doi: 10.12086/oee.2019.180365

宽光谱大面积多阶梯光场光谱感光仪

  • 基金项目:
    国家重点研发计划(2016YFF0101904,2016YFB1102303);国家自然基金资助项目(61775140,61775141)
详细信息
    作者简介:
    通讯作者: 黄元申(1963-),男,硕士,高级工程师,主要从事光学仪器设计,以及光栅等微纳光学器件设计和制备等的研究。E-mail: hyshyq@sina.com
  • 中图分类号: O433.1; TH744.1

Spectrosensitometer with wide spectrum, large scale and multistep optical field

  • Fund Project: Supported by the National Key Research and Development Program of China (2016YFF0101904, 2016YFB1102303) and the National Natural Science Foundation of China (61775140, 61775141)
More Information
  • 研制了一种新型光谱感光仪,其特点是宽光谱(340 nm~900 nm),大曝光面(202 mm×90.5 mm),且面上具有多阶梯光强;制备具有18级光密度值的高精密阶梯光楔板,每个台阶的光密度值误差不大于0.01;根据光源的光谱特性镀制滤光膜,消除光栅二级光谱。自动控制采集系统采用LabVIEW与PLC一体机开发,水平方向采用光栅位移传感器构成闭环控制,波长定位偏差小于0.05 nm;竖直方向采用线性补偿方法,高度位置偏差小于0.05 mm。仪器能够自动测量光楔板上不同波长不同光强区域的单位面积光功率,用快门控制曝光时间,在宽光谱范围内对感光材料进行一次曝光。在显影定影后,用光密度计测量其光密度值,根据国标(GB10557-89)绘制出感光材料某一确定光密度值的光谱灵敏度曲线。

  • Overview: Spectral sensitivity is one of the most important characteristics of photosensitive materials, which represents the photographic effect of photosensitive materials on radiation of different wavelengths. There are many kinds of instruments used to measure the spectral sensitivity curves of photosensitive materials, but these instruments are old, cumbersome and inefficient. In addition, because of the low energy of ultraviolet band and the uneven distribution of the light intensity on the spectral surface, the equipment, which is built by improving the spectrograph, cannot be used to draw the photosensitive curve of photosensitive materials. Therefore, a new type of spectrosensitometer has been developed, which is made up of a homemade 110 mm × 110 mm blazed grating and a cylindrical reflector with a curvature radius of 1643.59 mm, to produce a 202 mm × 90.5 mm spectrum plane. The operating wavelength ranges from 340 nm to 900 nm. The optical density value error of each step on the 18-step wedge with high precision, which is invented by means of evaporation and ions beam etching micro-compensation technology, is not greater than 0.01. The step wedge is placed on the spectrum to form a stepped distribution (vertical direction) of the spectral intensity of each wavelength. The step wedge engraves with spectral wavelength carved lines, the positioning line and the wavelength calibration engraved line. According to the spectral characteristic of the light source, the filter film is plated in the geometric region corresponding to the band of 600 nm ~ 900 nm of the step wedge to eliminate the secondary spectrum of the grating. The film filter evaporated according to the spectral characteristic of the light source can eliminate the secondary spectrum of grating. The automatic control acquisition system is developed by LabVIEW and all-in-one PLC with HMI. The ball screws are used as vertical and horizontal displacement device. In the horizontal direction, the grating displacement sensor is adopted to form the closed-loop control, and the wavelength positioning deviation is less than 0.05 nm. Linear compensation method is adopted in the vertical direction with a height deviation of less than 0.05 mm. Spectrosensitometer automatically measures optical power of lights with different wavelengths and light intensities on the step wedge. The shutter controls exposure time. Photosensitive materials are once exposed within the scope of the wide spectrum. After being developed and fixed, the optical density value can be measured by densitometer. The spectral sensitivity curve of a photosensitive material with a certain optical density value can be drawn according to the national standard (GB10557-89).

  • 加载中
  • 图 1  仪器的光路结构图。L:光源;S:狭缝;R:平面反射镜;M:凹面反射镜;G:闪耀光栅;C:柱面反射镜;D:电子快门; F:成像面

    Figure 1.  The optical diagram of the instrument. L: Source; S: Slit; R: Reflector; M: Concave mirror; G: Grating; C: Cylindrical; D: Electronic shutter; F: Focal plane

    图 2  汞灯光谱图

    Figure 2.  The mercury lamp spectrogram

    图 3  阶梯光楔板

    Figure 3.  The step wedge

    图 4  安装有阶梯光楔板的卤钨灯光谱面

    Figure 4.  The tungsten halogen lamp spectrogram with the step wedge

    图 5  未滤除二级光谱的感光干板的曝光照片

    Figure 5.  The exposure result of photographic plate with secondary spectrum

    图 6  滤除二级光谱的感光干板的曝光照片

    Figure 6.  The exposure result of photographic plate without secondary spectrum

    图 7  光谱感光仪系统框图

    Figure 7.  The system block diagram of spectrosensitometer

    图 8  水平方向定位闭环控制算法

    Figure 8.  Closed-loop control algorithm for horizontal position

    图 9  竖直扫描区域的上下边界位置偏差。(a)波长采样间隔为3 nm;(b)波长采样间隔为10 nm

    Figure 9.  The error of vertical scan area at the upper and lower boundaries. (a) The wavelength sampling is with an interval of 3 nm; (b) The wavelength sampling is with an interval of 10 nm

    图 10  692 nm最为敏感的感光干板曝光照片

    Figure 10.  The exposure result of photographic plate with the most sensitive wavelength of 692 nm

    图 11  光密度D=1.0对应的光谱灵敏度曲线

    Figure 11.  The spectral sensitivity curve for D=1.0

    表 1  光学系统设计参数

    Table 1.  Optical system design parameters

    尺寸 倾斜角度/(°) 曲率半径/mm 光栅线数/(l/mm) 光束入射角度/(°) 槽形角/(°)
    平面反射镜 62 mm×62 mm×6 mm 45.00
    凹面反射镜 ϕ148 mm×25 mm 17.95 640
    闪耀光栅 110 mm×110 mm×12 mm 10.94 350 25 6
    柱面反射镜 390 mm×110 mm×50 mm 5.90 1643.59
    下载: 导出CSV
  • [1]

    李景镇.光学手册[M].西安:陕西科学技术出版社, 1986: 2481-2518.

    [2]

    陈子辉, 李庆喜, 张复实.高灵敏化学型非银盐感光材料的研发策略——从银盐感光材料说起[J].信息记录材料, 2013, 14(4): 31-35. doi: 10.3969/j.issn.1009-5624.2013.04.007

    Chen Z H, Li Q X, Zhang F S. Strategies toward highly sensitive non-silver, photochemical imaging materials[J]. Information Recording Materials, 2013, 14(4): 31-35. doi: 10.3969/j.issn.1009-5624.2013.04.007

    [3]

    国家技术监督局.感光材料光谱灵敏度测定方法: GB/T 10557-1989[S]. 1989.

    State Bureau of Technical Supervision. Method for determination of spectral sensitivity of photographic materials: GB/T 10557-1989[S]. 1989.

    [4]

    库奇科A C.航空摄影学: 原理与质量评价[M].蔡俊良, 沈鸣岐, 译.北京: 测绘出版社, 1982: 177.

    Kuchko A C. Aerial Photography Principle and Quality Evaluation[M]. Cai J L, Shen M Q, trans. Beijing: Surveying and Mapping Press, 1982: 177.

    [5]

    皮·格拉夫基德.照相化学-第三分册: 彩色复演[M].陈光民, 译.北京: 中国电影出版社, 1992: 167-168.

    Pierre G. Chimie Photographique[M]. Chen G M, trans. Beijing: China Film Press, 1992: 167-168.

    [6]

    Cogley R M, Knight S E, Toomey T J. Measuring photoresist spectral response with a spectrosensitometer[J]. Proceedings of SPIE, 1988, 922: 212-216. doi: 10.1117/12.968415

    [7]

    王弘钰. 8098单片机在光谱感光仪上的应用研究[J].光学 精密工程, 1991(2): 120-123. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM199102028.htm

    Wang H Y. Application of spectrum photosensitive instrument using 8098-single-chip microcomputer[J]. Optics and Precision Engineering, 1991(2): 120-123. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM199102028.htm

    [8]

    Walker R A. An equal-energy scanning spectrosensitometer[J]. Photographic Science and Engineering, 1970, 14(6): 421-427. http://cn.bing.com/academic/profile?id=6382cae1a3f94140000bf90b6a672018&encoded=0&v=paper_preview&mkt=zh-cn

    [9]

    孙乐, 黄元申, 盛斌, 等.感光材料光谱灵敏度测定曝光系统的设计[J].光电工程, 2016, 43(12): 72-78. doi: 10.3969/j.issn.1003-501X.2016.12.012

    Sun L, Huang Y S, Sheng B, et al. Design of exposure system for the spectral sensitivity detection of the photosensitive material[J]. Opto-Electronic Engineering, 2016, 43(12): 72-78. doi: 10.3969/j.issn.1003-501X.2016.12.012

    [10]

    Banning M. Neutral density filters of chromel A[J]. Journal of the Optical Society of America, 1947, 37(9): 686-687. doi: 10.1364/JOSA.37.000686

    [11]

    Frenkel A, Zhang Z M. Broadband high-optical-density filters in the infrared[J]. Optics Letters, 1994, 19(18): 1495-1497. doi: 10.1364/OL.19.001495

    [12]

    Bittar A, White M G. Design of ultraviolet neutral density filters using metal-insulator inhomogeneous layers[J]. Applied Optics, 1992, 31(28): 6122-6126. doi: 10.1364/AO.31.006122

    [13]

    国家机械工业局.光学零件镀膜中性滤光膜: JB/T 8226.5—1999[S].北京: 中国机械工业出版社, 2000.

    State Bureau of Machine Building Industry. Coating for optical element neutral-filter coating: JB/T 8226.5—1999[S]. Beijing: China Machinery Industry Press, 2000.

    [14]

    中华人民共和国工业和信息化部.线性渐变中性密度滤光片: JB/T 11532—2013[S].北京: 机械工业出版社, 2013.

    Ministry of Industry and Information Technology of the People's Republic of China. Linear variable neutral density filters: JB/T 11532—2013[S]. Beijing: China Machine Press, 2013.

    [15]

    李学瑞, 武文革, 安春华, 等. Ni80Cr20合金薄膜制备影响因素的试验研究[J].工具技术, 2017, 51(7): 39-41. doi: 10.3969/j.issn.1000-7008.2017.07.010

    Li X R, Wu W G, An C H, et al. Research for preparation affecting factor of Ni80Cr20 alloy film[J]. Tool Engineering, 2017, 51(7): 39-41. doi: 10.3969/j.issn.1000-7008.2017.07.010

    [16]

    王忠连, 王瑞生, 阴晓俊, 等.镀制方式对高衰减镍铬合金膜中性度的影响[J].光电工程, 2014, 41(8): 90-94. doi: 10.3969/j.issn.1003-501X.2014.08.015

    Wang Z L, Wang R S, Yin X J, et al. The influence of different coating process on density neutrality of deep attenuation Ni-Cr film[J]. Opto-Electronic Engineering, 2014, 41(8): 90-94. doi: 10.3969/j.issn.1003-501X.2014.08.015

    [17]

    苏仔见, 倪攀, 许少伦. LabVIEW在运动控制系统实验平台的应用和实现[J].实验室研究与探索, 2011, 30(10): 38-39, 110. doi: 10.3969/j.issn.1006-7167.2011.10.011

    Su Z J, Ni P, Xu S L. Realization of motion control system experimental platform based on LabVIEW[J]. Research and Exploration in Laboratory, 2011, 30(10): 38-39, 110. doi: 10.3969/j.issn.1006-7167.2011.10.011

    [18]

    Dixit S A, Jain A. Implementation of PPC-SSR as final control element and interfacing of PLC with LabVIEW using modbus in two tank non interacting level control system[C]//Proceedings of the 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 2016: 1-6.

    [19]

    Wang G S, Deng Y, Xie Q, et al. Design electric closed-loop of multidrive NC servo control system based on LabVIEW[C]//Proceedings of the IEEE 4th International Conference on Digital Manufacturing & Automation, Qingdao, China, 2013: 449-452.

    [20]

    Junoh S C K, Abdullah L, Jamaludin Z, et al. Evaluation of tracking performance of NPID double hyperbolic controller design for XY table ball-screw drive system[C]//Proceedings of the 11th IEEE Asian Control Conference, Gold Coast, QLD, Australia, 2017: 665-670.

    [21]

    Niranjan P, Shetty S C, Byndoor C D, et al. Friction identification and control of ball screw driven system using PLC[C]//Proceedings of 2016 IEEE International Conference On Recent Trends in Electronics, Information & Communication Technology, Bangalore, India, 2016: 803-808.

  • 加载中

(11)

(1)

计量
  • 文章访问数:  7592
  • PDF下载数:  3090
  • 施引文献:  0
出版历程
收稿日期:  2018-07-11
修回日期:  2018-10-21
刊出日期:  2019-02-18

目录

/

返回文章
返回