Jian Jialing, Cao Lin, Wei Xiqiao, et al. A review of photopolymers on holography volume data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180552. doi: 10.12086/oee.2019.180552
Citation: Jian Jialing, Cao Lin, Wei Xiqiao, et al. A review of photopolymers on holography volume data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180552. doi: 10.12086/oee.2019.180552

A review of photopolymers on holography volume data storage

    Fund Project: Supported by National Natural Science Foundation of China (61605006) and the Natural Science Foundation of Beijing (4182013), China
More Information
  • Volume holographic storage technology has the advantages of high storage density, huge data capacity, parallel read and write, fast transmission speed and so forth. In Big Data era, this method has great potential to meet its needs of low cost and low storage density. Holographic storage devices fabricated by photopolymer materials have attracted wide attention because of its several advantages, such as low cost, light weight, and high commercial value. The excellent performance of photopolymer applied on volume holographic storage is introduced in this paper.
  • 加载中
  • [1] 青川.光存储应对冷数据挑战[J].网络运维与管理, 2016(2): 71

    Google Scholar

    Qing C. Optical storage meets the challenge of cold data storage[J]. IT Operation and Maintenance, 2016(2): 71.

    Google Scholar

    [2] 李建华, 刘金鹏, 林枭, 等.体全息存储研究现状及发展趋势[J].中国激光, 2017, 44(10): 100001.

    Google Scholar

    Li J H, Liu J P, Lin X, et al. Volume holographic data storage[J]. Chinese Journal of Lasers, 2017, 44(10): 100001.

    Google Scholar

    [3] 谭小地.大数据时代的光存储技术[J].红外与激光工程, 2016, 45(9): 0935001.

    Google Scholar

    Tan X D. Optical data storage technologies for big data era[J]. Infrared and Laser Engineering, 2016, 45(9): 0935001.

    Google Scholar

    [4] Haw M. Holographic data storage: the light fantastic[J]. Nature, 2003, 422(6932): 556-558. doi: 10.1038/422556a

    CrossRef Google Scholar

    [5] 陶世荃, 江竹青, 万玉红, 等.光学体全息技术及应用[M].北京:科学出版社, 2013.

    Google Scholar

    [6] Chen G N, Ni M L, Peng H Y, et al. Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals[J]. ACS Applied Materials and Interfaces, 2017, 9(2): 1810-1819. doi: 10.1021/acsami.6b13129

    CrossRef Google Scholar

    [7] Zhao Y, Zhong J, Ye Y, Luo Z X, et al. Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording[J]. Materials Letters, 2015, 138(1): 284-286.

    Google Scholar

    [8] Li C M Y, Cao L C, Wang Z, et al. Hybrid polarization-angle multiplexing volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 2014, 39(24): 6891-6894. doi: 10.1364/OL.39.006891

    CrossRef Google Scholar

    [9] Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404(6773): 53-56. doi: 10.1038/35003523

    CrossRef Google Scholar

    [10] Ye C F, Kamysiak K T, Sullivan A C, et al. Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer[J]. Optics Express, 2012, 20(6): 6575-6583. doi: 10.1364/OE.20.006575

    CrossRef Google Scholar

    [11] 禚渡华, 陶世荃, 施盟泉, 等.全息记录材料光致聚合物的收缩率[J].中国激光, 2007, 34(11): 1543-1547. doi: 10.3321/j.issn:0258-7025.2007.11.017

    CrossRef Google Scholar

    Zhuo D H, Tao S Q, Shi M Q, et al. Shrinkage of photopolymer for holographic recording materials[J]. Chinese Journal of Lasers, 2007, 34(11): 1543-1547. doi: 10.3321/j.issn:0258-7025.2007.11.017

    CrossRef Google Scholar

    [12] Jeudy M J, Robillard J J. Spectral photosensitization of a variable index material for recording phase holograms with high efficiency[J]. Optics Communications, 1975, 13(1): 25-28. doi: 10.1016/0030-4018(75)90149-2

    CrossRef Google Scholar

    [13] Lawrence J R, O'Neill F T, Sheridan J T. Adjusted intensity nonlocal diffusion model of photopolymer grating formation[J]. Journal of the Optical Society of America B, 2002, 19(4): 621-629. doi: 10.1364/JOSAB.19.000621

    CrossRef Google Scholar

    [14] Gleeson M R, Kelly J V, Sabol D, et al. Modeling the photochemical effects present during holographic grating formation in photopolymer materials[J]. Journal of Applied Physics, 2007, 102(2): 023108. doi: 10.1063/1.2747536

    CrossRef Google Scholar

    [15] Gleeson M R, Sabol D, Liu S, et al. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length[J]. Journal of the Optical Society of America B, 2008, 25(3): 396-406. doi: 10.1364/JOSAB.25.000396

    CrossRef Google Scholar

    [16] Guo J X, Gleeson M R, Liu S, et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Ⅰ. Theoretical modelling[J]. Journal of Optics, 2011, 13(9): 095601. doi: 10.1088/2040-8978/13/9/095601

    CrossRef Google Scholar

    [17] Guo J X, Gleeson M R, Liu S, et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Ⅱ. Experimental results[J]. Journal of Optics, 2011, 13(9): 095602. doi: 10.1088/2040-8978/13/9/095602

    CrossRef Google Scholar

    [18] Gallego S, Ortuño M F, Neipp C, et al. Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers[J]. Optics Express, 2007, 15(15): 9308-9319. doi: 10.1364/OE.15.009308

    CrossRef Google Scholar

    [19] Gallego S, Márquez A, Ortuño M, et al. Monomer diffusion in sustainable photopolymers for diffractive optics applications[J]. Optical Materials, 2011, 33(11): 1626-1629. doi: 10.1016/j.optmat.2011.04.026

    CrossRef Google Scholar

    [20] Steckman G J, Solomatine I, Zhou G, et al. Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory[J]. Optics Letters, 1998, 23(16): 1310-1312. doi: 10.1364/OL.23.001310

    CrossRef Google Scholar

    [21] Fujii R, Guo J X, Klepp J, et al. Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics[J]. Optics Letters, 2014, 39(12): 3453-3456. doi: 10.1364/OL.39.003453

    CrossRef Google Scholar

    [22] Guo J X, Fujii R, Ono T, et al. Effects of chain-transferring thiol functionalities on the performance of nanoparticle-polymer composite volume gratings[J]. Optics Letters, 2014, 39(23): 6743-6746. doi: 10.1364/OL.39.006743

    CrossRef Google Scholar

    [23] Liu Y, Fan F L, Hong Y F, et al. Volume holographic recording in Irgacure 784-doped PMMA photopolymer[J]. Optics Express, 2017, 25(17): 20654-20662. doi: 10.1364/OE.25.020654

    CrossRef Google Scholar

    [24] Fan F L, Liu Y, Hong Y F, et al. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA[J]. Optics Express, 2018, 26(14): 17794-17803. doi: 10.1364/OE.26.017794

    CrossRef Google Scholar

    [25] Liu J P, Horimai H, Lin X, et al. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding[J]. Optics Express, 2018, 26(4): 3828-3838. doi: 10.1364/OE.26.003828

    CrossRef Google Scholar

    [26] Liu P, Chang F W, Zhao Y, et al. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures[J]. Optics Express, 2018, 26(2): 1072-1082. doi: 10.1364/OE.26.001072

    CrossRef Google Scholar

    [27] Liu P, Zhao Y, Li Z R, et al. Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer[J]. Optics Express, 2018, 26(6): 6993-7004. doi: 10.1364/OE.26.006993

    CrossRef Google Scholar

    [28] Liu P, Wang L L, Zhao Y, et al. Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions[J]. Optical Materials Express, 2018, 8(6): 1441-1453. doi: 10.1364/OME.8.001441

    CrossRef Google Scholar

    [29] Posner T. Beiträge zur Kenntniss der ungesättigten Verbindungen. Ⅱ. Ueber die addition von mercaptanen an ungesättigte kohlenwasserstoffe[J] Berichte der deutschen chemischen Gesellschaft, 1905, 38(1): 646-657. doi: 10.1002/(ISSN)1099-0682

    CrossRef Google Scholar

    [30] Ashworth F, Burkhardt G N. Effects induced by the phenyl group. Part Ⅰ. The addition of polar reagents to styrene and the behaviour of the halogenated ethylbenzenes[J]. Journal of the Chemical Society (Resumed), 1928: 1791-1802.

    Google Scholar

    [31] Kolb H C, Finn M G, Sharpless K B. Click chemistry: diverse chemical function from a few good reactions[J]. Angewandte Chemie International Edition, 2001, 40(11): 2004-2021. doi: 10.1002/(ISSN)1521-3773

    CrossRef Google Scholar

    [32] Hata E, Mitsube K, Momose K, et al. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization[J]. Optical Materials Express, 2011, 1(2): 207-222. doi: 10.1364/OME.1.000207

    CrossRef Google Scholar

    [33] Takayama S, Nagaya K, Momose K, et al. Effects of symbol modulation coding on readout fidelity of shift-multiplexed holographic digital data page storage in a photopolymerizable nanoparticle-(thiol-ene)polymer composite film[J]. Applied Optics, 2014, 53(10): B53-B59. doi: 10.1364/AO.53.000B53

    CrossRef Google Scholar

    [34] Fukuda Y, Tomita Y. Spatial frequency responses of anisotropic refractive index gratings formed in holographic polymer dispersed liquid Crystals[J]. Materials, 2016, 9(3): 188. doi: 10.3390/ma9030188

    CrossRef Google Scholar

    [35] Ye S, Cramer N B, Smith I R, et al. Reaction kinetics and reduced shrinkage stress of thiol-yne-methacrylate and thiol-yne-acrylate ternary systems[J]. Macromolecules, 2011, 44(23): 9084-9090. doi: 10.1021/ma2018809

    CrossRef Google Scholar

    [36] Nair D P, Cramer N B, Gaipa J C, et al. Two-stage reactive polymer network forming systems[J]. Advanced Functional Materials, 2012, 22(7): 1502-1510. doi: 10.1002/adfm.v22.7

    CrossRef Google Scholar

    [37] Peng H Y, Nair N P, Kowalski B A, et al. High performance graded rainbow holograms via two-stage sequential orthogonal thiol-click chemistry[J]. Macromolecules, 2014, 47(7): 2306-2315. doi: 10.1021/ma500167x

    CrossRef Google Scholar

    [38] Suzuki N, Tomita Y. Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%[J]. Applied Optics, 2004, 43(10): 2125-2129. doi: 10.1364/AO.43.002125

    CrossRef Google Scholar

    [39] Goldenberg L M, Sakhno O V, Smirnova T N, et al. Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation[J]. Chemistry of Materials, 2008, 20(14): 4619-4627. doi: 10.1021/cm8005315

    CrossRef Google Scholar

    [40] Li C M Y, Cao L C, Li J M, et al. Improvement of volume holographic performance by plasmon-induced holographic absorption grating[J]. Applied Physics Letters, 2013, 102(6): 061108. doi: 10.1063/1.4792312

    CrossRef Google Scholar

    [41] Li C M Y, Cao L C, He Q S, et al. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer[J]. Optics Express, 2014, 22(5): 5017-5028. doi: 10.1364/OE.22.005017

    CrossRef Google Scholar

    [42] Cao L C, Wu S H, Hao J P, et al. Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite[J]. Applied Physics Letters, 2017, 111(14): 141104. doi: 10.1063/1.5000953

    CrossRef Google Scholar

    [43] Zhang M H, Zheng J H, Gui K, et al. Electro-optical characteristics of holographic polymer dispersed liquid crystal gratings doped with nanosilver[J]. Applied Optics, 2013, 52(31): 7411-7418. doi: 10.1364/AO.52.007411

    CrossRef Google Scholar

    [44] Xue X Y, Hai F S, Gao L Z, et al. Effect of nanoparticle diameter on the holographic properties of gold nanoparticle dispersed acrylate photopolymer films[J]. Optik, 2013, 124(24): 6987-6990. doi: 10.1016/j.ijleo.2013.05.180

    CrossRef Google Scholar

    [45] Li C L, Li X X, Xue X Y, et al. Holographic properties of Fe3O4 nanoparticle-doped organic-inorganic hybrid photopolymer[J]. Optik, 2014, 125(21): 6509-6512. doi: 10.1016/j.ijleo.2014.08.033

    CrossRef Google Scholar

    [46] Li Y X, Wang C H, Li H L, et al. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites[J]. Applied Optics, 2015, 54(33): 9799-9802. doi: 10.1364/AO.54.009799

    CrossRef Google Scholar

    [47] Booth B L. Photopolymer material for holography[J]. Applied Optics, 1972, 11(12): 2994-2995. doi: 10.1364/AO.11.002994

    CrossRef Google Scholar

    [48] Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 2003, 5216: 10-25. doi: 10.1117/12.513614

    CrossRef Google Scholar

    [49] Dhar L, Curtis K, Tackitt M, et al. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems[J]. Optics Letters, 1998, 23(21): 1710-1712. doi: 10.1364/OL.23.001710

    CrossRef Google Scholar

    [50] St ckel N, Bruder F K, Askham F R, et al. Advantageous recording media for holographic applications: 8053147[P]. 2011-11-08.

    Google Scholar

    [51] Dhar L. High performance recording media for holographic data storage[C]//Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Rio Grande, Puerto Rico, 2004: 727-728.

    Google Scholar

    [52] Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 2005, 44(13): 2575-2579. doi: 10.1364/AO.44.002575

    CrossRef Google Scholar

    [53] Gruenwedel E. GE develops disc to store 100 DVDs, 20 BDS[J]. Home Media Magazine, 2009, 31(18): 17.

    Google Scholar

    [54] Ayres M R, Anderson K, Askham F, et al. Holographic data storage at 2+ Tbit/in2[J]. Proceedings of SPIE, 2015, 9386: 93860G.

    Google Scholar

    [55] Takabayashi M, Okamoto A. Self-referential holography and its applications to data storage and phase-to-intensity conversion[J]. Optics Express, 2013, 21(3): 3669-3681. doi: 10.1364/OE.21.003669

    CrossRef Google Scholar

    [56] Eto T, Takabayashi M, Okamoto A, et al. Numerical simulations on inter-page crosstalk characteristics in three-dimensional shift multiplexed self-referential holographic data storage[J]. Japanese Journal of Applied Physics, 2016, 55(8S3): 08RD01. doi: 10.7567/JJAP.55.08RD01

    CrossRef Google Scholar

    [57] Klepp J, Pruner C, Tomita Y, et al. Holographic gratings for slow-neutron optics[J]. Materials, 2012, 5(12): 2788-2815. doi: 10.3390/ma5122788

    CrossRef Google Scholar

    [58] Zhang J, Dai H T, Yan C, et al. Lasing properties from dye-doped holographic polymer dispersed liquid crystal confined in two-dimensional cylindrical geometry[J]. Optical Materials Express, 2016, 6(4): 1367-1375. doi: 10.1364/OME.6.001367

    CrossRef Google Scholar

  • Overview: In this review, recent advances in photopolymer research on volume holographic storage are introduced. Volume holographic storage technology has the advantages of high storage density, huge data capacity, parallel read and write, fast transmission speed and so on. In Big Data era, this method has great potential to meet its needs of low cost and low storage density. Photopolymer has attracted more attention because of its several advantages, such as high diffraction efficiency, extreme sensitivity and high resolution. Holographic storage devices fabricated by such materials within the advantages of low cost, light weight, and high commercial value are more suitable for marketing. Since the 1990s, photopolymer materials have received extensive attention in the field of volume holographic storage. Researchers have taken various examinations to enhance the main properties of photopolymer materials such as diffraction efficiency refractive index modulation and shrinkage rate. Changing the monomer and photoinitiator types are considered as common method to satisfy different applications. By adding chain transfer agents into the photopolymer, researchers are able to control the polymer chain length to increase crosslinking density and diminish polymerization shrinkage. An another effective way to improve refractive modulation index and reduce shrinkage rate is adding different kinds of nanoparticles(such as liquid crystal, silica nanoparticles, zirconia nanoparticles, aluminum oxide nanoparticles, gold nanoparticles and so forth) to the system. The measures currently widely taken to improve the performance of photopolymers materials are the methods described above. At present, photopolymer materials have been obtained near 100% in the diffraction efficiency, more than 10-2 in the refractive modulation index, and 0.4% in the shrinkage rate. In recent years, photopolymer materials have not only attained fruitful research results on volume holographic storage, but also have achieved good development in various optical devices, such as biosensing, fiber optic communication, etc. However, there is far from large-scale commercial production. For the long-term progress of volume holographic storage, the development of photopolymer materials with excellent performance has important scientific significance and great economic benefits. Both scientific research and commercial fields need to pay more attention to photopolymer materials.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(10683) PDF downloads(4919) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint