Luo Zhijun, Liu Yanan, Chen Menglin, et al. Industrialization oriented technology of dual-beam super-resolution data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180559. doi: 10.12086/oee.2019.180559
Citation: Luo Zhijun, Liu Yanan, Chen Menglin, et al. Industrialization oriented technology of dual-beam super-resolution data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180559. doi: 10.12086/oee.2019.180559

Industrialization oriented technology of dual-beam super-resolution data storage

    Fund Project: Supported by National Natural Science Foundation of China (61775068, 61432007)
More Information
  • Though optical data storage technology has attractive potential because of its long storage lifetime and low energy consumption, current optical data storage technologies are challenged by their capacity and dentistry for big data application. Dual-beam super-resolution optical data storage technology exhibits obvious advantage in ultra-high capacity and density due to the overcoming of optical diffraction limit. This work illuminates the key problems in the industrialization of dual-beam super-resolution optical data storage technology, and discusses some basic solutions to these obstacles.
  • 加载中
  • [1] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [2] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3): 144-147. doi: 10.1038/nphoton.2009.2

    CrossRef Google Scholar

    [3] Li L J, Gattass R R, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910-913. doi: 10.1126/science.1168996

    CrossRef Google Scholar

    [4] Andrew T L, Tsai H Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 2009, 324(5929): 917-921. doi: 10.1126/science.1167704

    CrossRef Google Scholar

    [5] Scott T F, Kowalski B A, Sullivan A C, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913-917. doi: 10.1126/science.1167610

    CrossRef Google Scholar

    [6] Stocker M P, Li L J, Gattass R R, et al. Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time[J]. Nature Chemistry, 2011, 3(3): 223-227. doi: 10.1038/nchem.965

    CrossRef Google Scholar

    [7] Cao Y Y, Gan Z S, Jia B H, et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Optics Express, 2011, 19(20): 19486-19494. doi: 10.1364/OE.19.019486

    CrossRef Google Scholar

    [8] Fischer J, Von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 2010, 22(32): 3578-3582. doi: 10.1002/adma.201000892

    CrossRef Google Scholar

    [9] Harke B, Dallari W, Grancini G, et al. Polymerization inhibition by triplet state absorption for nanoscale lithography[J]. Advanced Materials, 2013, 25(6): 904-909. doi: 10.1002/adma.v25.6

    CrossRef Google Scholar

    [10] Wollhofen R, Katzmann J, Hrelescu C, et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Express, 2013, 21(9): 10831-10840. doi: 10.1364/OE.21.010831

    CrossRef Google Scholar

    [11] 刘铁诚, 张力, 孙静, 等.二芳基乙烯的光学性质及其在超分辨光存储中的应用[J].中国激光, 2018, 45(9): 0903001.

    Google Scholar

    Liu T C, Zhang L, Sun J, et al. Optical properties of dithienylethene and its applications in super-resolution optical storage[J]. Chinese Journal of Lasers, 2018, 45(9): 0903001.

    Google Scholar

    [12] Göttfert F, Wurm C A, Mueller V, et al. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution[J]. Biophysical Journal, 2013, 105(1): L01-L03. doi: 10.1016/j.bpj.2013.05.029

    CrossRef Google Scholar

    [13] Hell S, Jakobs S, Andresen M, et al. Method and apparatus for storing a three-dimensional arrangement of data bits in a solid-state body: 20070047287[P]. 2007-03-01.

    Google Scholar

    [14] Polyakova S M, Belov V N, Bossi M L, et al. Synthesis of photochromic compounds for aqueous solutions and focusable light[J]. European Journal of Organic Chemistry, 2011, 2011(18): 3301-3312. doi: 10.1002/ejoc.201100166

    CrossRef Google Scholar

    [15] Gan Z S, Evans R A, Gu M. Far-field super-resolution recording and reading towards petabyte optical discs[C]//Frontiers in Optics 2016, Rochester, New York United States, 2016.

    Google Scholar

    [16] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [17] Nielson R, Kaehr B, Shear J B. Microreplication and design of biological architectures using dynamic‐mask multiphoton lithography[J]. Small, 2009, 5(1): 120-125. doi: 10.1002/smll.v5:1

    CrossRef Google Scholar

  • Overview: Compared with the hard drive disk and solid state disk, longer storage lifetime and lower energy consumption data storage is required for Big Data centers. Optical data storage has the advantage of these two characteristics, but for traditional optical discs, such as blue-ray discs, their storage capacity is limited because of optical diffraction. Ultra high density optical storage has been extensively studied in recent years for its potential application for Big Data centers. Dual-beam super-resolution optical data storage has the potential to achieve petabyte capacity for a single standard disc by overcoming the optical diffraction limit. This dual-beam super-resolution storage technology combines technologies of dual-beam super-resolution laser nanofabrication and stimulated emission depletion (STED) microscopy. Dual-beam super-resolution laser nanofabrication can realize 9 nm feature size and about 50 nm feature resolution. STED microscopy has obtained a best resolution 5.8 nm at the current state of the art. Dual beam super-resolution optical data storage employees two lasers. One has a Gaussian shape of its focus plane, and the other is focused as a doughnut shape with zero intensity at the center. The doughnut shaped beam depletes the effect of Gaussian shaped laser interacting with materials in the processes of data recording and readout to acquire a resolution beyond the optical diffraction limit. For industrialization of dual-beam super-resolution optical data storage, we illuminate the key problems of storage medium, super-resolution data recording, super-resolution data readout and super-resolution positioning. The storage medium should be a solid film after disc fabrication, and have material property change such as fluorescence intensity enhancement induced by local illumination of the Gaussian shape laser to enable data recording and readout. The storage medium should be specifically designed to be capable of adopting the dual-beam approach to realize super-resolution. Except super-resolution recording and readout, super-resolution positioning technology is also required to guarantee position accurate data manipulation at the nanoscale. We propose a STED microscopy approach for super-resolution positioning in the super-resolution optical data storage setup. To simplify the optical system integration with a best achievable stability, separated super-resolution optical data recording and readout setup is suggested. The method to speed up data recording and readout is also discussed.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(8419) PDF downloads(3024) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint