激光诱导光栅表面等离子体增强CdSe量子点荧光

黎显继, 白忠臣, 彭嫚, 等. 激光诱导光栅表面等离子体增强CdSe量子点荧光[J]. 光电工程, 2019, 46(5): 180464. doi: 10.12086/oee.2019.180464
引用本文: 黎显继, 白忠臣, 彭嫚, 等. 激光诱导光栅表面等离子体增强CdSe量子点荧光[J]. 光电工程, 2019, 46(5): 180464. doi: 10.12086/oee.2019.180464
Li Xianji, Bai Zhongchen, Peng Man, et al. Surface plasma enhanced fluorescence of CdSe quantum dots induced by laser on a grating surface[J]. Opto-Electronic Engineering, 2019, 46(5): 180464. doi: 10.12086/oee.2019.180464
Citation: Li Xianji, Bai Zhongchen, Peng Man, et al. Surface plasma enhanced fluorescence of CdSe quantum dots induced by laser on a grating surface[J]. Opto-Electronic Engineering, 2019, 46(5): 180464. doi: 10.12086/oee.2019.180464

激光诱导光栅表面等离子体增强CdSe量子点荧光

  • 基金项目:
    国家自然科学基金项目(61741505);贵州省科技支撑项目(QKHZ[2017]2887);中央引导地方科技发展专项(QKZYD[2017]4004);贵州省人才团队项目([2018]5616)
详细信息
    作者简介:
    通讯作者: 秦水介(1963-),女,博士,教授,博士生导师,主要从事微型电子机械系统、激光技术方面的研究。E-mail:shuijie_qin@sina.com
  • 中图分类号: O432; TN253

Surface plasma enhanced fluorescence of CdSe quantum dots induced by laser on a grating surface

  • Fund Project: Supported National Natural Science Foundation of China (61741505), Science and Technology Support Project by Guizhou Province (QKHZ[2017]2887), Central Guidance for Local Science and Technology Development Projects (QKZYD[2017]4004), and Talent Team Project of Guizhou Province ([2018]5616)
More Information
  • 利用532 nm皮秒脉冲激光在金纳米光栅表面诱导表面等离子体激发CdSe量子点荧光,并测量了CdSe量子点荧光增强效应。分别采用AFM刻蚀方法和自组装方法在硅基金膜表面制备了纳米光栅/CdSe量子点的多层薄膜结构。通过调节皮秒脉冲激光的功率,在显微拉曼平台上测量了CdSe量子点的荧光光谱。结果表明,金纳米光栅/CdSe量子点结构能够实现量子点远场荧光大幅增强,其最大荧光强度达7.80倍,并在达到最大强度点开始迅速饱和。该研究结果可广泛应用于光电器件、生物医学检测研究等领域。

  • Overview: In recent years, the fluorescence technology has been greatly developed, but in practical applications, the sensitivity of the existing fluorescence detection technology is not satisfactory. Semiconductor quantum dots can exhibit higher luminous efficiency and stronger brightness compared to conventional fluorescent dyes, and their emitted light wavelengths can cover almost the entire visible light region, thus, it has been widely used in bio-detection, biomarker and optoelectronic device development. However, the commonly used quantum dots tend to have low fluorescence emission intensity, and the fluorescence stability needs to be further improved, which greatly limits its application. Therefore, the technology based on surface plasmon enhanced quantum dots fluorescence has become a new method for reducing fluorescence noise and improving sensitivity, and it has developed rapidly for this reason.

    In the 1970s, Drexhage discovered the phenomenon of surface-enhanced fluorescence, but until the end of the 20th century, Lakowicz and his colleagues experimentally studied the effect of metal nanostructures on enhancing fluorescence, and made great contributions to the mechanism and application of surface-enhanced fluorescence, it begun to attract people's attention. And today, surface-enhanced fluorescence technology based on nanostructures has been widely used in the fields of DNA nondestructive testing, biosensing analysis, and single molecule detection. In recent years, research on the use of various metal nanostructures to enhance quantum dot fluorescence has also made a great progress. However, the mechanism of interaction between metal nanostructures and quantum dots is still not unified, and the control of coupling ligands between quantum dots and nanostructures is still one of the hot issues in current scientific research. In this paper, a nanograting structure was prepared on gold film surface of silicon fund by AFM force etching method, and CdSe quantum dots with organic molecular ligands were attached to the surface of nanograting by self-assembly technique. A multilayers film structure of nanograting/CdSe quantum dots were prepared. The fluorescence spectrum of the CdSe quantum dots was measured by adjusting the picosecond laser (with 532 nm excitation wavelengths) power on a micro-Raman measuring platform. The results showed that the structure of the gold nanograting and CdSe QDs could greatly enhance the far-field fluorescence of CdSe QDs, the maximum fluorescence intensity was up to 7.80 times, and it had been saturated rapidly at the point of reaching the maximum intensity. The results of this study could be widely used in fields of the optoelectronic devices, biomedical detection.

  • 加载中
  • 图 1  实验流程图

    Figure 1.  Schematic of experimental process

    图 2  光栅/CdSe量子点结构示意图

    Figure 2.  Schematic diagram of gold grating/CdSe QDs structure

    图 3  结构图

    Figure 3.  Schematic for COMSOL simulation

    图 4  光栅结构的AFM形貌图及其周期尺寸。(a)表面形貌;(b)周期尺寸

    Figure 4.  AFM topography of the grating structure and its periodic dimensions. (a) Surface topography; (b) Period size

    图 5  光栅耦合SPPs时入射光的反、透射关系及其近场电场分布。(a)入射光反射率及透射率;(b)近场电场分布

    Figure 5.  The reflection and transmission of incident light of grating-coupled SPPs and its near field electric field distributions. (a) Reflectance and transmittance of incident light; (b) Distribution of near field electric field

    图 6  不同衬底上CdSe随激发功率变化的荧光光谱。(a)无光栅结构;(b)光栅结构

    Figure 6.  Fluorescence spectra of CdSe with different excitation power on different substrates. (a) Without grating structure; (b) With grating structure

    图 7  CdSe量子点荧光谱及其不同衬底上的增强荧光谱。(a) CdSe量子点荧光谱;(b) 543 nm~640 nm波段CdSe量子点荧光谱(1),光栅结构CdSe量子点增强荧光谱(2),无光栅结构CdSe量子点增强荧光谱(3)

    Figure 7.  CdSe QDs fluorescence spectra and it's enhanced fluorescence spectra on different substrates. (a) Fluorescence spectrum of CdSe QDs; (b) Fluorescence spectrum of CdSe QDs (543 nm~640 nm) (1), grating structure CdSe QDs enhanced fluorescence spectrum (2), non-grating CdSe QDs enhanced fluorescence spectrum (3)

    图 8  光栅结构表面CdSe荧光饱和曲线

    Figure 8.  CdSe fluorescence saturation curve of grating structure surface

    表 1  有无光栅衬底上CdSe的荧光数值及其强度关系

    Table 1.  Relationship between fluorescence values and intensity of CdSe on a different substrate

    Excitation intensity/mW738750762774786798810
    Grating structure676.211887.113947.214969.406589.1612973.8812973.88
    Without grating structure570.06849.20978.941053.641450.721663.022087.62
    Enhancement factor1.192.224.034.724.547.806.21
    下载: 导出CSV
  • [1]

    刘楠, 洪志良.用于生物荧光检测的CMOS光电探测器设计[J].光电工程, 2008, 35(7): 140-144. doi: 10.3969/j.issn.1003-501X.2008.07.028

    Liu N, Hong Z L. Design of CMOS process compatible photodetectors for fluorescence detecting application[J]. Opto-Electronic Engineering, 2008, 35(7): 140-144. doi: 10.3969/j.issn.1003-501X.2008.07.028

    [2]

    杨晓博, 闫卫平.表面贴附微透镜阵列的OLED诱导荧光检测系统[J].光电工程, 2015, 42(1): 6-12. doi: 10.3969/j.issn.1003-501X.2015.01.002

    Yang X B, Yan W P. OLED-induced fluorescence detection system affixed with micro lens array for capillary electrophoresis microchip[J]. Opto-Electronic Engineering, 2015, 42(1): 6-12. doi: 10.3969/j.issn.1003-501X.2015.01.002

    [3]

    Fort E, Grésillon S. Surface enhanced fluorescence[J]. Journal of Physics D: Applied Physics, 2008, 41(1): 013001. doi: 10.1088/0022-3727/41/1/013001

    [4]

    Drexhage K H. Influence of a dielectric interface on fluorescence decay time[J]. Journal of Luminescence, 1970, 1-2: 693-701. doi: 10.1016/0022-2313(70)90082-7

    [5]

    Turner E H, Lauterbach K, Pugsley H R, et al. Detection of green fluorescent protein in a single bacterium by capillary electrophoresis with laser-induced fluorescence[J]. Analytical Chemistry, 2007, 79(2): 778-781. doi: 10.1021/ac061778r

    [6]

    Lakowicz J R, Shen B, Gryczynski Z, et al. Intrinsic fluorescence from DNA can be enhanced by metallic particles[J]. Biochemical and Biophysical Research Communications, 2001, 286(5): 875-879. doi: 10.1006/bbrc.2001.5445

    [7]

    Abel B, Coskun S, Mohammed M, et al. Metal-enhanced fluorescence from silver nanowires with high aspect ratio on glass slides for biosensing applications[J]. The Journal of Physical Chemistry C, 2015, 119(1): 675-684. doi: 10.1021/jp509040f

    [8]

    Aslan K, Lakowicz J R, Szmacinski H, et al. Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: metal-enhanced fluorescence sensing[J]. Journal of Fluorescence, 2005, 15(1): 37-40. doi: 10.1007/s10895-005-0211-0

    [9]

    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 2008, 5(9): 763-775. doi: 10.1038/nmeth.1248

    [10]

    Xiong L H, Cui R, Zhang Z L, et al. Uniform fluorescent nanobioprobes for pathogen detection[J]. ACS Nano, 2014, 8(5): 5116-5124. doi: 10.1021/nn501174g

    [11]

    Hong Z Y, Lv C, Liu A A, et al. Clicking hydrazine and aldehyde: the way to labeling of viruses with quantum dots[J]. ACS Nano, 2015, 9(12): 11750-11760. doi: 10.1021/acsnano.5b03256

    [12]

    刘锋, 朱俊, 魏俊峰, 等.量子点敏化太阳电池[J].化学进展, 2013, 25(2-3): 409-418. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201507013

    Liu F, Zhu J, Wei J F, et al. Quantum dot-sensitized solar cells[J]. Progress in Chemistry, 2013, 25(2-3): 409-418. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201507013

    [13]

    Peng B, Li Z P, Mutlugun E, et al. Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence[J]. Nanoscale, 2014, 6(11): 5592-5598. doi: 10.1039/C3NR06341K

    [14]

    Kannegulla A, Liu Y, Cheng L J. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array[J]. Proceedings of SPIE, 2016, 9758: 97580B. doi: 10.1117/12.2212132

    [15]

    Peer A, Hu Z J, Singh A, et al. Photoluminescence enhancement of CuInS2 quantum dots in solution coupled to plasmonic gold nanocup array[J]. Small, 2017, 13(33): 1700660. doi: 10.1002/smll.201700660

    [16]

    Hao L C, Bai Z C, Qin S J, et al. The effect of differential temperatures on the latent heat in the nucleation of CdSe quantum dots[J]. Journal of Semiconductors, 2017, 38(4): 042004. doi: 10.1088/1674-4926/38/4/042004

    [17]

    Bai Z C, Hao L C, Zhang Z P, et al. Measuring photoluminescence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics microscopy[J]. Functional Materials Letters, 2016, 9(3): 1650040. doi: 10.1142/S1793604716500405

    [18]

    Deng Z T, Cao L, Tang F Q, et al. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis[J]. The Journal of Physical Chemistry B, 2005, 109(35): 16671. doi: 10.1021/jp052484x

    [19]

    林佼, 王大鹏, 司光远.表面等离子激元超构表面的研究进展[J].光电工程, 2017, 44(3): 289-296. doi: 10.3969/j.issn.1003-501X.2017.03.003

    Lin J, Wang D P, Si G Y. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289-296. doi: 10.3969/j.issn.1003-501X.2017.03.003

    [20]

    Yao M, Zhou F, Shi J P, et al. Nanoparticle coupling effect allows enhanced localized field on Au bowl-like pore arrays[J]. RSC Advances, 2016, 6(36): 29958-29962. doi: 10.1039/C5RA25336E

    [21]

    Dong K X, Ji Y P, Mi J J, et al. High sensitivity SPR sensor for liquid phase sample with Ag/PbS/Graphene hybrid nanostructure[J]. Opto-Electronic Engineering, 2017, 44(2): 198-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdgc201702010

    [22]

    Hutter E, Fendler J H. Exploitation of localized surface Plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685-1706. doi: 10.1002/(ISSN)1521-4095

    [23]

    Bauch M, Toma K, Toma M, et al. Plasmon-enhanced fluorescence biosensors: a review[J]. Plasmonics, 2014, 9(4): 781-799. doi: 10.1007/s11468-013-9660-5

    [24]

    Dneprovskii V S, Zhukov E A, Lyaskovskii V L, et al. Luminescence of CdSe/Al2O3 quantum wires at high photoexcitation levels[J]. Physics of the Solid State, 2004, 46(9): 1755-1760. doi: 10.1134/1.1799198

  • 加载中

(8)

(1)

计量
  • 文章访问数:  6924
  • PDF下载数:  2599
  • 施引文献:  0
出版历程
收稿日期:  2018-09-06
修回日期:  2018-11-26
刊出日期:  2019-05-01

目录

/

返回文章
返回