调频连续波激光干涉光纤温度传感器

王欢, 郑刚, 陈海滨, 等. 调频连续波激光干涉光纤温度传感器[J]. 光电工程, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506
引用本文: 王欢, 郑刚, 陈海滨, 等. 调频连续波激光干涉光纤温度传感器[J]. 光电工程, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506
Wang Huan, Zheng Gang, Chen Haibin, et al. Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor[J]. Opto-Electronic Engineering, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506
Citation: Wang Huan, Zheng Gang, Chen Haibin, et al. Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor[J]. Opto-Electronic Engineering, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506

调频连续波激光干涉光纤温度传感器

  • 基金项目:
    陕西省光电测试与仪器技术重点实验室开放基金资助项目(2015SZSJ-60-3)
详细信息
    作者简介:
    通讯作者: 郑刚(1956-),男,博士,教授,主要从事光电检测与光纤传感的研究。E-mail:zhengg@xatu.edu.cn
  • 中图分类号: TN247

Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor

  • Fund Project: Supported by Shaanxi Provincial Key Laboratory of Photoelectric Testing and Instrument Technology Open Fund Project (2015SZSJ-60-3)
More Information
  • 本文提出了一种调频连续波激光干涉非本征型法珀腔光纤温度传感器。使用具有较高热膨胀系数的不锈钢圆管封装法珀腔制成温度传感探头。不锈钢圆管作为法珀腔腔体的同时也是温度敏感元件。通过调频连续波干涉测量技术测量法珀腔因受热膨胀所产生的腔长变化量,实现对温度的传感。实验结果表明,该光纤温度传感器测温分辨率达到了0.0002 ℃,温度测量灵敏度可达3022 nm/℃。此温度传感器不仅具有较高的灵敏度与分辨率,且结构简单稳定,具有良好的应用前景。

  • Overview: Optical fiber temperature sensors have received widespread attention because of its high sensitivity, fast response, anti-electromagnetic interference, ultra-high voltage insulation, anti-combustion and anti-explosion. However, the temperature sensing probes of the available interferometric optical fiber temperature sensors are generally made of optical fibers, and most of them use the white light interference measurement technology. Because the thermal expansion coefficient of optical fiber is not high, the sensitivity of temperature measurement needs to be further optimized. In addition, because the optical fiber is relatively fragile, especially at higher temperature, the loss of coating-protected fibers can be embrittled in contact with air, which will affect the reliability of the temperature sensor. The white light interferometry uses a broadband light source and a spectral analysis device to collect the reflection or transmission spectrum. White light interference solves the optical path difference from the interference beam by spectral information, but its measurement range is limited, and requires a sophisticated spectral analysis device or module, which is relatively high in cost.

    This paper presents an extrinsic Fabry-Perot (F-P) cavity optical fiber temperature sensor, which is based on the frequency-modulated continuous-wave (FMCW) laser interference. Compared with the traditional laser interferometry technology, since the signal of optical FMCW is a dynamic signal (i.e., a time continuous function), to calibrate the fractional phase, distinguish the phase-shift direction and count the number of full periods is quite easy. The proposed FMCW laser interference temperature sensor mainly composed of an optical system, a modulation signal generation system and a signal acquisition and processing system. The temperature sensor uses a stainless-steel tube with a higher expansion coefficient and better chemical stability as the F-P cavity. The extrinsic fiber F-P cavity temperature sensing probe is fabricated by coupling the cavity with the fiber using a single mode fiber collimator with output direction is strictly perpendicular to the two mirrors of the F-P cavity. The temperature is determined by measuring the change in cavity length caused by thermal expansion of the F-P cavity, and the cavity change is found out by using the frequency-modulated continuous wave interferometry. In this experiment, the F-P cavity is a stainless-steel tube, and the temperature probes with lengths of 100 mm and 200 mm (the length of the Faber cavity are 80 mm and 180 mm) are used for the experiment. The experimental results show that the temperature measurement resolution of the optical fiber temperature sensor reached of 0.0002 ℃ and the temperature measurement sensitivity reached 3022 nm/℃.

  • 加载中
  • 图 1  调频连续波激光干涉光纤温度传感器光路原理简图

    Figure 1.  Schematic of frequency-modulated continuous-wave laser interference fiber temperature sensor

    图 2  调频连续波激光频率调制波形

    Figure 2.  Frequency modulating waveform of the frequencymodulation continuous-wave laser

    图 3  测温探头制作流程图。(a)连接准直器与黄铜管并粘接部分反射镜;(b)插入不锈钢管并粘接全反镜;(c)温度探头

    Figure 3.  Temperature probe production process. (a) The collimator is connected to the brass tube and bonded to the mirror; (b) Socket stainless steel tube and bond mirror; (c) Temperature probe

    图 4  非本征光纤温度传感头实物照片。(a)探头长度为100 mm;(b)探头长度为200 mm

    Figure 4.  A picture of the real extrinsic fiber temperature probe. (a) Probe length is 100 mm; (b) Probe length is 200 mm

    图 5  调频连续波干涉温度传感器原理框图

    Figure 5.  Frequency modulated continuous wave laser interference temperature sensor

    图 6  实际锯齿波调制波形与干涉信号波形图

    Figure 6.  Actual sawtooth modulation signal and interference signal waveform

    图 7  鉴相算法流程图

    Figure 7.  Phase discrimination algorithm flow chart

    图 8  腔长变化量与温度之间关系。(a)拟合曲线;(b)重复测量

    Figure 8.  Relationship between cavity length change and temperature. (a) Fitting curve; (b) Repeated measurement

    图 9  恒温情况下腔长变化量随机误差及其分布。(a)恒温情况下腔长变化量随机误差;(b)随机误差分布图

    Figure 9.  Random error and its distribution of cavity length variation under fixed temperature. (a) Random error of cavity length variation under fixed temperature; (b) Random error distribution

  • [1]

    Raghuwanshi S K, Kumar M, Priya A. High-sensitive fiber bragg grating sensor for different temperature application[M]//Janyani V, Tiwari M, Singh G, et al. Optical and Wireless Technologies. Singapore: Springer, 2018: 75-81.

    [2]

    Palumbo G, Tosi D, Iadicicco A, et al. Analysis and design of chirped fiber bragg grating for temperature sensing for possible biomedical applications[J]. IEEE Photonics Journal, 2018, 10(3): 7103015. http://cn.bing.com/academic/profile?id=ff40d42140448c6b62e685bc7b849fde&encoded=0&v=paper_preview&mkt=zh-cn

    [3]

    许忠保, 叶虎年, 叶梅.半导体吸收式光纤温度传感器[J].光电技术应用, 2004, 25(1): 62-64. http://d.old.wanfangdata.com.cn/Periodical/qhdxxb200103018

    Xu Z B, Ye H N, Ye M. Semiconductor absorption fiber-optic temperature sensor[J]. Semiconductor Optoelectronics, 2004, 25(1): 62-64. http://d.old.wanfangdata.com.cn/Periodical/qhdxxb200103018

    [4]

    孙圣和, 王廷云, 徐影.光纤测量与传感技术[M]. 3版.哈尔滨:哈尔滨工业大学出版社, 2007.

    Sun S H, Wang Y Y, Xu Y. Optical Fiber Measurement and Sensing Technology[M]. 3ed. Harbin: Harbin Institute of Technology Press, 2007.

    [5]

    Shen F B, Peng W, Cooper K L, et al. UV-induced intrinsic Fabry-Perot interferometric fiber sensors[J]. Proceedings of SPIE, 2004, 5590: 47-56. doi: 10.1117/12.577306

    [6]

    饶云江, 邓明, 朱涛.飞秒激光加工的高对比度法布里-珀罗干涉传感器[J].中国激光, 2009, 36(6): 1459-1462. http://d.old.wanfangdata.com.cn/Periodical/zgjg200906028

    Rao Y J, Deng M, Zhu T. Visibility-enhanced in-Line Fabry-Pérot Interferometers by the use of femtosecond lasers[J]. Chinese Journal of Lasers, 2009, 36(6): 1459-1462. http://d.old.wanfangdata.com.cn/Periodical/zgjg200906028

    [7]

    Zhang G L, Yang M H, Wang M. Large temperature sensitivity of fiber-optic extrinsic Fabry-Perot interferometer based on polymer-filled glass capillary[J]. Optical Fiber Technology, 2013, 19(6): 618-622. doi: 10.1016/j.yofte.2013.09.010

    [8]

    Ding W H, Jiang Y. Miniature photonic crystal fiber sensor for high-temperature measurement[J]. IEEE Sensors Journal, 2014, 14(3): 786-789. doi: 10.1109/JSEN.2013.2285553

    [9]

    Zheng J. Analysis of optical frequency modulated continuous wave interference[J]. Applied Optics, 2004, 43(21): 4189-4198. doi: 10.1364/AO.43.004189

    [10]

    Zheng J. Continued analysis of optical frequency-modulated continuous-wave interference[J]. Applied Optics, 2005, 44(5): 765-769. doi: 10.1364/AO.44.000765

    [11]

    Zheng J. Coherence analysis of optical frequency-modulated continuous-wave interference[J]. Applied Optics, 2006, 45(16): 3681-3687. doi: 10.1364/AO.45.003681

    [12]

    Zheng J. Multiplexed reflectometric fiber optic frequency-modulated continuous-wave interferometric displacement sensor[J]. Optical Engineering, 2005, 44(8): 084401. doi: 10.1117/1.2012424

    [13]

    Zheng J. Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry[M]. Canada: Springer, 1980.

    [14]

    郑刚, 高明, 刘卫国, 等.一种高精度数字鉴相方法: CN108318737A[P]. 2018-07-24

    Zheng G, Gao M, Liu W G, et al. High-precision digital phase discrimination method: CN108318737A[P]. 2018-07-24.

  • 加载中

(9)

计量
  • 文章访问数:  8239
  • PDF下载数:  2125
  • 施引文献:  0
出版历程
收稿日期:  2018-09-28
修回日期:  2018-11-26
刊出日期:  2019-05-01

目录

/

返回文章
返回