Putnin T, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K et al. Enhanced organic solar cell performance: Multiple surface plas-mon resonance and incorporation of silver nanodisks into a grating-structure electrode. Opto-Electron Adv 2, 190010 (2019). doi: 10.29026/oea.2019.190010
Citation: Putnin T, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K et al. Enhanced organic solar cell performance: Multiple surface plas-mon resonance and incorporation of silver nanodisks into a grating-structure electrode. Opto-Electron Adv 2, 190010 (2019). doi: 10.29026/oea.2019.190010

Original Article Open Access

Enhanced organic solar cell performance: Multiple surface plasmon resonance and incorporation of silver nanodisks into a grating‐structure electrode

More Information
  • In this study, plasmonic nanostructures were examined to enhance the light harvesting of organic thin-film solar cells (OSCs) by multiple surface plasmon resonance (SPR) phenomena originating from the grating-coupled configuration with a Blu-ray Disc recordable (BD-R)-imprinted aluminum (Al) grating structure and the incorporation of a series of silver nanodisks (Ag NDs). The devices with such a configuration maximize the light utilization inside OSCs via light absorption, light scattering, and trapping via multiple surface plasmon resonances. Different types and sizes of metallic nanoparticles (NPs), i.e., gold nanoparticles (Au NPs), Ag nanospheres (Ag NSs), and Ag NDs, were used, which were blended separately in a PEDOT:PSS hole transport layer (HTL). The device structure comprised of grating-imprinted-Al/P3HT:PCBM/Ag ND:PEDOT:PSS/ITO. Results obtained from the J–V curves revealed that the power conversion efficiency (PCE) of grating-structured Al/P3HT:PCBM/PEDOT:PSS/ITO is 3.16%; this value is ~6% higher than that of a flat substrate. On the other hand, devices with flat Al and incorporated Au NPs, Ag NSs, or Ag NDs in the HTL exhibited PCEs ranging from 3.15% to 3.37%. Furthermore, OSCs with an Al grating substrate were developed by the incorporation of the Ag ND series into the PEDOT:PSS layer. Compared with that of a reference device, the PCEs of the devices increased to 3.32%–3.59% (11%–20% improvement), indicating that the light absorption enhancement at the active layer corresponds to the grating-coupled surface plasmon resonance and localized surface plasmon resonance excitations with strong near-field distributions penetrating into the active layer leading to higher efficiencies and subsequent better current generation.
  • 加载中
  • [1] Chen C C, Dou L, Zhu R, Chung C H, Song T B et al. Visibly transparent polymer solar cells produced by solution processing. ACS Nano 6, 7185–7190(2012). doi: 10.1021/nn3029327

    CrossRef Google Scholar

    [2] Ou Q D, Li Y Q, Tang J X. Light manipulation in organic photovoltaics. Adv Sci 3, 1600123(2016). doi: 10.1002/advs.201600123

    CrossRef Google Scholar

    [3] Atwater H A. Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 9, 205–213(2010). doi: 10.1038/nmat2629

    CrossRef Google Scholar

    [4] Chen J D, Cui C H, Li Y Q, Zhou L, Ou Q D et al. Single‐junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater 27, 1035–1041(2015). doi: 10.1002/adma.201404535

    CrossRef Google Scholar

    [5] Yang Y, Mielczarek K, Aryal M, Zakhidov A, Hu W. Nanoimprinted polymer solar cell. ACS Nano 6, 2877–2892(2012). doi: 10.1021/nn3001388

    CrossRef Google Scholar

    [6] You J B, Dou L T, Yoshimura K, Kato T, Ohya K et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4, 1446(2013). doi: 10.1038/ncomms2411

    CrossRef Google Scholar

    [7] Bagher A M. Introduction to organic solar cells. Sustain Energy 2, 85–90(2014). doi: 10.12691/rse-2-3-2

    CrossRef Google Scholar

    [8] Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nat Photonic 9, 403–408(2015). doi: 10.1038/nphoton.2015.84

    CrossRef Google Scholar

    [9] Lu L Y, Luo Z Q, Xu T, Yu L P. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 13, 59–64(2013). doi: 10.1021/nl3034398

    CrossRef Google Scholar

    [10] Yao M N, Shen P, Liu Y, Chen B Y, Guo W B et al. Performance improvement of polymer solar cells by surface-energy-induced dual Plasmon resonance. ACS Appl Mater Interfaces 8, 6183–6189(2016). doi: 10.1021/acsami.6b00297

    CrossRef Google Scholar

    [11] Cai J G, Qi L M. Recent advances in antireflective surfaces based on nanostructure arrays. Mater Horiz 2, 37–53 (2015). doi: 10.1039/C4MH00140K

    CrossRef Google Scholar

    [12] Munday J N, Atwater H A. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett 11, 2195–2201 (2011). doi: 10.1021/nl101875t

    CrossRef Google Scholar

    [13] Chen B C, Cheng Y S, Gau C, Lee Y C. Enhanced performance of polymer solar cells with imprinted nanostructures on the active layer. Thin Solid Films 564, 384–389(2014). doi: 10.1016/j.tsf.2014.05.039

    CrossRef Google Scholar

    [14] Sha W E I, Li X H, Choy W C H. Breaking the space charge limit in organic solar cells by a novel plasmonic-electrical concept. Sci Rep 4, 6236 (2014). doi: 10.1038/srep06236

    CrossRef Google Scholar

    [15] Choy W C H, Chan W K, Yuan Y P. Recent advances in transition metal complexes and light-management engineering in organic optoelectronic devices. Adv Mater 26, 5368–5399 (2014). doi: 10.1002/adma.201306133

    CrossRef Google Scholar

    [16] Baba A, Aoki N, Shinbo K, Kato K, Kaneko F. Grating-coupled surface Plasmon enhanced short-circuit current in organic thin-film photovoltaic cells. ACS Appl Mater Interfaces 3, 2080–2084(2011). doi: 10.1021/am200304x

    CrossRef Google Scholar

    [17] Lan H B, Ding Y C. Nanoimprint lithography. In Wang M. Lithography 457–494(IntechOpen, 2010).

    Google Scholar

    [18] Wu H, Yang J L, Cao S L, Huang L L, Chen L H. Ordered organic nanostructures fabricated from anodic alumina oxide templates for organic bulk-heterojunction photovoltaics. Macromol Chem Phys 215, 584–596 (2014). doi: 10.1002/macp.v215.7

    CrossRef Google Scholar

    [19] Choi W M, Park O O. A soft-imprint technique for submicron-scale patterns using a PDMS mold. Microelectron Eng 7374, 178–183 (2004). doi: 10.1016/S0167-9317(04)00095-4

    CrossRef Google Scholar

    [20] Lee J H, Kim D W, Jang H, Choi J K, Geng J X et al. Enhanced solar-cell efficiency in bulk-heterojunction polymer systems obtained by nanoimprinting with commercially available AAO membrane filters. Small 5, 2139–2143 (2009). doi: 10.1002/smll.v5:19

    CrossRef Google Scholar

    [21] Aryal M, Buyukserin F, Mielczarek K, Zhao X M, Gao J M et al. Imprinted large-scale high density polymer nanopillars for organic solar cells. J Vac Sci Technol B 26, 2562–2566 (2008). doi: 10.1116/1.2981076

    CrossRef Google Scholar

    [22] Hu J C, Shirai Y, Han L Y, Wakayama Y. Template method for fabricating interdigitate p-n heterojunction for organic solar cell. Nanoscale Res Lett 7, 469(2012). doi: 10.1186/1556-276X-7-469

    CrossRef Google Scholar

    [23] Smith A J, Wang C, Guo D N, Sun C, Huang J X. Repurposing Blu-ray movie discs as quasi-random nanoimprinting templates for photon management. Nat Commun 5, 5517(2014). doi: 10.1038/ncomms6517

    CrossRef Google Scholar

    [24] Nootchanat S, Pangdam A, Ishikawa R, Wongravee K, Shinbo K et al. Grating-coupled surface Plasmon resonance enhanced organic photovoltaic devices induced by Blu-ray disc recordable and Blu-ray disc grating structures. Nanoscale 9, 4963–4971(2017). doi: 10.1039/C6NR09951C

    CrossRef Google Scholar

    [25] Tvingstedt K, Persson N K, Inganäs O, Rahachou A, Zozoulenko I V. Surface Plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91, 113514(2007). doi: 10.1063/1.2782910

    CrossRef Google Scholar

    [26] Lu F F, Zhang W D, Huang L G, Liang S H, Mao D et al. Mode evolution and nanofocusing of grating-coupled surface Plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010(2018). doi: 10.29026/oea.2018.180010

    CrossRef Google Scholar

    [27] Liu C H, Hong M H, Cheung H W, Zhang F, Huang Z Q et al. Bimetallic structure fabricated by laser interference lithography for tuning surface Plasmon resonance. Opt Express 16, 10701–10709(2008). doi: 10.1364/OE.16.010701

    CrossRef Google Scholar

    [28] Chomkitichai W, Ninsonti H, Baba A, Phanichphant S, Shinbo K et al. Multiple plasmonic effect on photocurrent generation of metal-loaded titanium dioxide composite/dye films on gold grating surface. Surf Interface Anal 46, 607–612 (2014). doi: 10.1002/sia.v46.9

    CrossRef Google Scholar

    [29] Hara K, Lertvachirapaiboon C, Ishikawa R, Ohdaira Y, Shinbo K et al. Inverted organic solar cells enhanced by grating-coupled surface plasmons and waveguide modes. Phys Chem Chem Phys 19, 2791–2796(2017). doi: 10.1039/C6CP06931B

    CrossRef Google Scholar

    [30] Phetsang S, Phengdaam A, Lertvachirapaiboon C, Ishikawa R, Shinbo K et al. Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells. Nanoscale Adv 1, 792–798(2019). doi: 10.1039/C8NA00119G

    CrossRef Google Scholar

    [31] Pangdam A, Nootchanat S, Lertvachirapaiboon C, Ishikawa R, Shinbo K et al. Investigation of gold quantum dot enhanced organic thin film solar cells. Part Part Syst Charact 34, 1700133(2017). doi: 10.1002/ppsc.v34.11

    CrossRef Google Scholar

    [32] Pangdam A, Nootchanat S, Ishikawa R, Shinbo K, Kato K et al. Effect of urchin-like gold nanoparticles in organic thin-film solar cells. Phys Chem Chem Phys 18, 18500–18506(2016). doi: 10.1039/C6CP02373H

    CrossRef Google Scholar

    [33] Wang D H, Kim D Y, Choi K W, Seo J H, Im S H et al. Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50, 5519–5523 (2011). doi: 10.1002/anie.201101021

    CrossRef Google Scholar

    [34] Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P L et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5, 959–967 (2011). doi: 10.1021/nn102295p

    CrossRef Google Scholar

    [35] Yang J, You J B, Chen C C, Hsu W C, Tan H R et al. Plasmonic polymer tandem solar cell. ACS Nano 5, 6210–6217 (2011). doi: 10.1021/nn202144b

    CrossRef Google Scholar

    [36] Li X H, Choy W C H, Huo L J, Xie F X, Sha W E I et al. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater 24, 3046–3052(2012). doi: 10.1002/adma.v24.22

    CrossRef Google Scholar

    [37] Millstone J E, Hurst S J, Métraux G S, Cutler J I, Mirkin C A. Colloidal gold and silver triangular nanoprisms. Small 5, 646–664(2009). doi: 10.1002/smll.v5:6

    CrossRef Google Scholar

    [38] Notarianni M, Vernon K, Chou A, Aljada M, Liu J Z et al. Plasmonic effect of gold nanoparticles in organic solar cells. Solar Energy 106, 23–37(2014). doi: 10.1016/j.solener.2013.09.026

    CrossRef Google Scholar

    [39] Singh A, Dey A, Das D, Iyer P K. Combined influence of plasmonic metal nanoparticles and dual cathode buffer layers for highly efficient rrP3HT: PCBM-based bulk heterojunction solar cells. J Mater Chem C 5, 6578–6587(2017). doi: 10.1039/C7TC01621B

    CrossRef Google Scholar

    [40] Otieno F, Shumbula N P, Airo M, Mbuso M, Moloto N et al. Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT: PSS buffer layer. AIP Adv 7, 085302(2017). doi: 10.1063/1.4995803

    CrossRef Google Scholar

    [41] Baek S W, Noh J, Lee C H, Kim B S, Seo M K et al. Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method. Sci Rep 3, 1726(2013). doi: 10.1038/srep01726

    CrossRef Google Scholar

    [42] Pastoriza-Santos I, Liz-Marzán L M. Colloidal silver nanoplates. State of the art and future challenges. J Mater Chem 18, 1724–1737 (2008). doi: 10.1039/b716538b

    CrossRef Google Scholar

    [43] Parnklang T, Lertvachirapaiboon C, Pienpinijtham P, Wongravee K, Thammacharoen C et al. H2O2-triggered shape transformation of silver nanospheres to nanoprisms with controllable longitudinal LSPR wavelengths. RSC Adv 3, 12886–12894 (2013). doi: 10.1039/c3ra41486h

    CrossRef Google Scholar

    [44] Wongravee K, Parnklang T, Pienpinijtham P, Lertvachirapaiboon C, Ozaki Y et al. Chemometric analysis of spectroscopic data on shape evolution of silver nanoparticles induced by hydrogen peroxide. Phys Chem Chem Phys 15, 4183–4189 (2013). doi: 10.1039/C2CP42758C

    CrossRef Google Scholar

    [45] Kozanoglu D, Apaydin D H, Cirpan A, Esenturk E N. Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Org Electron 14, 1720–1727(2013). doi: 10.1016/j.orgel.2013.04.008

    CrossRef Google Scholar

    [46] Li X H, Ren X G, Xie F X, Zhang Y X, Xu T T et al. High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects. Adv Opt Mater 3, 1220–1231(2015). doi: 10.1002/adom.v3.9

    CrossRef Google Scholar

    [47] Catchpole K R, Polman A. Plasmonic solar cells. Opt Express 16, 21793–21800(2008). doi: 10.1364/OE.16.021793

    CrossRef Google Scholar

    [48] Catchpole K R, Polman A. Design principles for particle Plasmon enhanced solar cells. Appl Phys Lett 93, 191113(2008). doi: 10.1063/1.3021072

    CrossRef Google Scholar

    [49] Gu M, Ouyang Z, Jia B H, Stokes N, Chen X et al. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics 1, 235–248(2012). doi: 10.1515/nanoph-2012-0180

    CrossRef Google Scholar

    [50] Chen X, Jia B H, Saha J K, Cai B Y, Stokes N et al. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett 12, 2187–2192(2012). doi: 10.1021/nl203463z

    CrossRef Google Scholar

    [51] Yang Y G, Feng S L, Li M, Wu Z W, Fang X et al. Structure, optical absorption, and performance of organic solar cells improved by gold nanoparticles in buffer layers. ACS Appl Mater Interfaces 7, 24430–24437(2015). doi: 10.1021/acsami.5b07983

    CrossRef Google Scholar

    [52] Nootchanat S, Phengdaam A, Ishikawa R, Lertvachirapaiboon C, Shinbo K et al. Plasmonic-enhanced photocurrent generation of organic photovoltaics induced by 1D grating and 2D crossed grating structures. J Nanosci Nanotechnol 19, 4727–4731(2019). doi: 10.1166/jnn.2019.16704

    CrossRef Google Scholar

    [53] Lertvachirapaiboon C, Maruyama T, Baba A, Ekgasit S, Shinbo K et al. Optical sensing platform for the colorimetric determination of silver nanoprisms and its application for hydrogen peroxide and glucose detections using a mobile device camera. Anal Sci 35, 271–276(2019). doi: 10.2116/analsci.18P412

    CrossRef Google Scholar

    [54] Fu Q, Sun W B. Mie theory for light scattering by a spherical particle in an absorbing medium. Appl Opt 40, 1354–1361(2001). doi: 10.1364/AO.40.001354

    CrossRef Google Scholar

    [55] Mattis R L, Baroody Jr A J. Carrier lifetime measurement by the photoconductive decay method. NBS Technical Note 736, 1–52(1972). doi: 10.6028/nbs.tn.736

    CrossRef Google Scholar

  • Supplementary information for Enhanced organic solar cell performance: Multiple surface plasmon resonance and incorporation of silver nanodisks into a grating-structure electrode
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(10875) PDF downloads(3051) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint