Li F H, Lan T Y, Huang L G, Ikechukwu I P, Liu W M et al. Spectrum evolution of Rayleigh scattering in one-dimensional waveguide. Opto-Electron Adv 2, 190012 (2019). doi: 10.29026/oea.2019.190012
Citation: Li F H, Lan T Y, Huang L G, Ikechukwu I P, Liu W M et al. Spectrum evolution of Rayleigh scattering in one-dimensional waveguide. Opto-Electron Adv 2, 190012 (2019). doi: 10.29026/oea.2019.190012

Original Article Open Access

Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide

More Information
  • Despite the tremendous awareness of Rayleigh scattering characteristics and its considerable research interest for numerous fields, no report has been documented on the dynamic characteristics of spectrum evolution (SpE) and physical law for Rayleigh scattering from a micro perspective. Herein, the dynamic characteristics of the SpE of Rayleigh scattering in a one-dimensional waveguide (ODW) is investigated based on the quantum theory and a SpE-model of Rayleigh backscattering (RBS) source is established. By means of simulation, the evolution law which represents the dynamic process of the spectrum linewidth at a state of continuous scattering is revealed, which is consistent with our previous experimental observation. Moreover, an approximate theoretical prediction of the existing relationship between the spectrum linewidth of RBS source and the transmission length in ODW is proposed, which theoretically provides the feasibility of constructing functional devices suitable to ascertain laser linewidth compression. The designed experimental scheme can be implemented provided the assumptions are fulfilled. In addition, a theoretical model of the micro-cavity structure to realize the deep compression of laser linewidth is proposed.
  • 加载中
  • [1] Mizuno Y, Zou W W, He Z Y, Hotate K. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). Opt Express 16, 12148-12153 (2008). doi: 10.1364/OE.16.012148

    CrossRef Google Scholar

    [2] Maier R R J, Macpherson W N, Barton J S, McCulloch S, Jones B J S. Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing. Meas Sci Technol 21, 094019 (2010). doi: 10.1088/0957-0233/21/9/094019

    CrossRef Google Scholar

    [3] Zhang Z Y, Bao X Y. Continuous and damped vibration detection based on fiber diversity detection sensor by Rayleigh backscattering. J Lightw Technol 26, 832-838 (2008). doi: 10.1109/JLT.2008.919446

    CrossRef Google Scholar

    [4] Pan Z Q, Yu C Y, Willner A E. Optical performance monitoring for the next generation optical communication networks. Opt Fiber Technol 16, 20-45 (2010). doi: 10.1016/j.yofte.2009.09.007

    CrossRef Google Scholar

    [5] Zheng Y, Wu Z F, Shum P P, Xu Z L, Keiser G et al. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron Adv 1, 180015 (2018). doi: 10.29026/oea.2018.180015

    CrossRef Google Scholar

    [6] Faris G W, Markosyan A, Porter C L, Doshay S. Two-tone frequency-modulation stimulated Rayleigh spectroscopy. Opt Lett 39, 4615-4618 (2014). doi: 10.1364/OL.39.004615

    CrossRef Google Scholar

    [7] Dong L. Stimulated thermal Rayleigh scattering in optical fibers. Opt Express 21, 2642-2656 (2013). doi: 10.1364/OE.21.002642

    CrossRef Google Scholar

    [8] Cui J W, Dang H, Feng K P, Yang W L, Geng T et al. Stimulated Brillouin scattering evolution and suppression in an integrated stimulated thermal Rayleigh scattering-based fiber laser. Photonics Res 5, 233-238 (2017). doi: 10.1364/PRJ.5.000233

    CrossRef Google Scholar

    [9] He G S, Lu C G, Zheng Q D, Prasad P N, Zerom P et al. Stimulated Rayleigh-Bragg scattering in two-photon absorbing media. Phys Rev A 71, 063810 (2005). doi: 10.1103/PhysRevA.71.063810

    CrossRef Google Scholar

    [10] Zhu T, Bao X Y, Chen L, Liang H, Dong Y K. Experimental study on stimulated Rayleigh scattering in optical fibers. Opt Express 18, 22958-22963 (2010). doi: 10.1364/OE.18.022958

    CrossRef Google Scholar

    [11] Zhu T, Bao X Y, Chen L. A single longitudinal-mode tunable fiber ring laser based on stimulated Rayleigh scattering in a nonuniform optical fiber. J Lightw Technol 29, 1802-1807 (2011). doi: 10.1109/JLT.2011.2142292

    CrossRef Google Scholar

    [12] Huang S H, Zhu T, Yin G L, Lan T Y, Huang L G et al. Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering. Opt Lett 42, 5286-5289 (2017). doi: 10.1364/OL.42.005286

    CrossRef Google Scholar

    [13] Zheng S B. Jaynes-Cummings model with a collective atomic mode. Phys Rev A 77, 045802 (2008). doi: 10.1103/PhysRevA.77.045802

    CrossRef Google Scholar

    [14] Romanelli A. Generalized Jaynes-Cummings model as a quantum search algorithm. Phys Rev A 80, 014302 (2009). doi: 10.1103/PhysRevA.80.014302

    CrossRef Google Scholar

    [15] Peano V, Thorwart M. Quasienergy description of the driven Jaynes-Cummings model. Phys Rev B 82, 155129 (2010). doi: 10.1103/PhysRevB.82.155129

    CrossRef Google Scholar

    [16] Chen Q H, Liu T, Zhang Y Y, Wang K L. Exact solutions to the Jaynes-Cummings model without the rotating-wave approximation. Europhys Lett 96, 14003 (2011). doi: 10.1209/0295-5075/96/14003

    CrossRef Google Scholar

    [17] Duan C K, Wen H L, Tanner P A. Local-field effect on the spontaneous radiative emission rate. Phys Rev B 83, 245123 (2011). doi: 10.1103/PhysRevB.83.245123

    CrossRef Google Scholar

    [18] Sharapova P R, Tikhonova O V. Coherent control of interaction and entanglement of a Rydberg atom with few photons. Laser Phys Lett 10, 075204 (2013). doi: 10.1088/1612-2011/10/7/075204

    CrossRef Google Scholar

    [19] Cheung H K, Law C K. Optomechanical coupling between a moving dielectric sphere and radiation fields: a Lagrangian- Hamiltonian formalism. Phys Rev A 86, 033807 (2012). doi: 10.1103/PhysRevA.86.033807

    CrossRef Google Scholar

    [20] Li Z X, Yin C H. The ground-state transition probability of impurity bound polaron in quantum rod. Phys B Condens Matter 418, 69-72 (2013). doi: 10.1016/j.physb.2013.03.004

    CrossRef Google Scholar

    [21] Akbari M, Andrianov S N, Kalachev A A. Quantum logic gates based on off-resonant cavity-assisted interaction between three-level atoms and single photons. Laser Phys 27, 075202 (2017). doi: 10.1088/1555-6611/aa7547

    CrossRef Google Scholar

    [22] Abdi M, Degenfeld-Schonburg P, Sameti M, Navarrete- Benlloch C, Hartmann M J. Dissipative optomechanical preparation of macroscopic quantum superposition states. Phys Rev Lett 116, 233604 (2016). doi: 10.1103/PhysRevLett.116.233604

    CrossRef Google Scholar

    [23] Benito M, Mi X, Taylor J M, Petta J R, Burkard G. Input-output theory for spin-photon coupling in Si double quantum dots. Phys Rev B 96, 235434 (2017). doi: 10.1103/PhysRevB.96.235434

    CrossRef Google Scholar

    [24] Raymer M G, McKinstrie C J. Quantum input-output theory for optical cavities with arbitrary coupling strength: application to two-photon wave-packet shaping. Phys Rev A 88, 043819 (2013). doi: 10.1103/PhysRevA.88.043819

    CrossRef Google Scholar

    [25] Hӓyrynen T, Oksanen J, Tulkki J. Dynamics of cavity fields with dissipative and amplifying couplings through multiple quantum two-state systems. Phys Rev A 83, 013801 (2011). doi: 10.1103/PhysRevA.83.013801

    CrossRef Google Scholar

    [26] Naether U, Quijandría F, García-Ripoll J J, Zueco D. Stationary discrete solitons in a driven dissipative Bose-Hubbard chain. Phys Rev A 91, 033823 (2015). doi: 10.1103/PhysRevA.91.033823

    CrossRef Google Scholar

    [27] Shi J L, Wu H P, Yan F, Yang J J, He X D. Experimental study on stimulated scattering of ZnO nanospheres dispersed in water. J Nanopart Res 18, 23 (2016). doi: 10.1007/s11051-016-3333-1

    CrossRef Google Scholar

    [28] Hӓyrynen T, Oksanen J, Tulkki J. Unified quantum jump superoperator for optical fields from the weak- to the strong-coupling limit. Phys Rev A 81, 063804 (2010). doi: 10.1103/PhysRevA.81.063804

    CrossRef Google Scholar

    [29] Gammelmark S, Mølmer K, Alt W, Kampschulte T, Meschede D. Hidden Markov model of atomic quantum jump dynamics in an optically probed cavity. Phys Rev A 89, 043839 (2014). doi: 10.1103/PhysRevA.89.043839

    CrossRef Google Scholar

    [30] Yin G L, Saxena B, Bao X Y. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber. Opt Express 19, 25981-25989 (2011). doi: 10.1364/OE.19.025981

    CrossRef Google Scholar

    [31] Pang M, Xie S R, Bao X Y, Zhou D P, Lu Y G et al. Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber. Opt Lett 37, 3129-3131 (2012). doi: 10.1364/OL.37.003129

    CrossRef Google Scholar

    [32] Liang W, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt Lett 35, 2822-2824 (2010). doi: 10.1364/OL.35.002822

    CrossRef Google Scholar

    [33] Liang W, Ilchenko V S, Eliyahu D, Savchenkov A A, Matsko A B et al. Ultralow noise miniature external cavity semiconductor laser. Nat Commun 6, 7371 (2015). doi: 10.1038/ncomms8371

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(8222) PDF downloads(2295) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint