Chen L W, Yin Y M, Li Y, Hong M H. Multifunctional inverse sensing by spatial distribution characterization of scattering photons. Opto-Electron Adv 2, 190019 (2019). doi: 10.29026/oea.2019.190019
Citation: Chen L W, Yin Y M, Li Y, Hong M H. Multifunctional inverse sensing by spatial distribution characterization of scattering photons. Opto-Electron Adv 2, 190019 (2019). doi: 10.29026/oea.2019.190019

Original Article Open Access

Multifunctional inverse sensing by spatial distribution characterization of scattering photons

More Information
  • These authors contributed equally to this work

  • Corresponding author: M H Hong, E-mail: elehmh@nus.edu.sg
  • Inverse sensing is an important research direction to provide new perspectives for optical sensing. For inverse sensing, the primary challenge is that scattered photon has a complicated profile, which is hard to derive a general solution. Instead of a general solution, it is more feasible and practical to derive a solution based on a specific environment. With deep learning, we develop a multifunctional inverse sensing approach for a specific environment. This inverse sensing approach can reconstruct the information of scattered photons and characterize multiple optical parameters simultaneously. Its functionality can be upgraded dynamically after learning more data. It has wide measurement range and can characterize the optical signals behind obstructions. The high anti-noise performance, flexible implementation, and extremely high threshold to optical damage or saturation make it useful for a wide range of applications, including self-driving car, space technology, data security, biological characterization, and integrated photonics.
  • 加载中
  • [1] Born M, Wolf E. Principles of Optics; Electromagnetic Theory of Propagation, Interference, and Diffraction of Light 5th ed (Pergamon Press, Oxford, 1975).

    Google Scholar

    [2] Kerker M, Loebl E M. Physical chemistry: a series of monographs. In The Scattering of Light and Other Electromagnetic Radiation (Elsevier Science, 1969). https://doi.org/10.1016/B978-0-12-404550-7.50020-8.

    Google Scholar

    [3] Gariepy G, Tonolini F, Henderson R, Leach J, Faccio D. Detection and tracking of moving objects hidden from view. Nat Photonics 10, 23-26 (2016). doi: 10.1038/nphoton.2015.234

    CrossRef Google Scholar

    [4] Liu H W, Huang Y G, Jiang H R. Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer. Proc Natl Acad Sci UAS 113, 3982-3985 (2016). doi: 10.1073/pnas.1517953113

    CrossRef Google Scholar

    [5] Endler J A. The color of light in forests and its implications. Ecol Monogr 63, 1-27 (1993). doi: 10.2307/2937121

    CrossRef Google Scholar

    [6] Su J, Goldberg A F G, Stoltz B M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl 5, e16001 (2016). doi: 10.1038/lsa.2016.1

    CrossRef Google Scholar

    [7] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793-796 (2006). doi: 10.1038/nmeth929

    CrossRef Google Scholar

    [8] Wang Z B, Guo W, Li L, Luk'yanchuk B, Khan A et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun 2, 218 (2011). doi: 10.1038/ncomms1211

    CrossRef Google Scholar

    [9] Gao P, Yao N, Wang C T, Zhao Z Y, Luo Y F et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett 106, 093110 (2015). doi: 10.1063/1.4914000

    CrossRef Google Scholar

    [10] Allsop T, Arif R, Neal R, Kalli K, Kundrát V et al. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures. Light Sci Appl 5, e16036 (2016). doi: 10.1038/lsa.2016.36

    CrossRef Google Scholar

    [11] Aćimović S S, Šípová H, Emilsson G, Dahlin A B, Antosiewicz T J et al. Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing. Light Sci Appl 6, e17042 (2017). doi: 10.1038/lsa.2017.42

    CrossRef Google Scholar

    [12] Deng R R, Qin F, Chen R F, Huang W, Hong M H et al. Temporal full-colour tuning through non-steady-state upconversion. Nat Nanotechnol 10, 237-242 (2015). doi: 10.1038/nnano.2014.317

    CrossRef Google Scholar

    [13] Wei Z, Chen X D. Deep-learning schemes for full-wave nonlinear inverse scattering problems. IEEE Trans Geosci Remote Sens 57, 1849-1860 (2019).

    Google Scholar

    [14] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644-647 (2008). doi: 10.1038/nature07279

    CrossRef Google Scholar

    [15] Yang J, Luo F F, Kao T S, Li X, Ho G W et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light: Sci Appl 3, e185 (2014). doi: 10.1038/lsa.2014.66

    CrossRef Google Scholar

    [16] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y et al. Satellite-to-ground quantum key distribution. Nature 549, 43-47 (2017). doi: 10.1038/nature23655

    CrossRef Google Scholar

    [17] Wei Z, Chen R, Chen X D. Nonlinear reconstruction of multilayer media in scanning microwave microscopy. IEEE Trans Instrum Meas 68, 197-205 (2019). doi: 10.1109/TIM.2018.2834058

    CrossRef Google Scholar

    [18] Yin T T, Wei Z, Chen X D. Wavelet transform subspace-based optimization method for inverse scattering. IEEE J Multiscale Multiphys Comput Tech 3, 176-184 (2018). doi: 10.1109/JMMCT.2018.2878483

    CrossRef Google Scholar

    [19] Taflove A, Hagness S C. Computational Electrodynamics: The Finite-difference Time-domain Method 3rd ed (Artech House, Boston, 2005).

    Google Scholar

    [20] Popoff S M, Lerosey G, Fink M, Boccara A C, Gigan S. Controlling light through optical disordered media: transmission matrix approach. New J Phys 13, [123021](2011). doi: 10.1088/1367-2630/13/12/123021

    CrossRef Google Scholar

    [21] Dickinson E J F, Ekström H, Fontes E. COMSOL multiphysics®: finite element software for electrochemical analysis. A mini-review. Electrochem Commun 40, 71-74 (2014). doi: 10.1016/j.elecom.2013.12.020

    CrossRef Google Scholar

    [22] Hou G Z, Lyu L J. Design of ultra wide-angle photographic objective based on ZEMAX. J Appl Opt 37, 441-445 (2016). doi: 10.5768/JAO201637.0305002

    CrossRef Google Scholar

    [23] Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J et al. Human-level control through deep reinforcement learning. Nature 518, 529-533 (2015). doi: 10.1038/nature14236

    CrossRef Google Scholar

    [24] Hezaveh Y D, Levasseur L P, Marshall P J. Fast automated analysis of strong gravitational lenses with convolutional neural networks. Nature 548, 555-557 (2017). doi: 10.1038/nature23463

    CrossRef Google Scholar

    [25] Shen Y, Harris N C, Skirlo S, Prabhu M, Baehr-Jones T et al. Deep learning with coherent nanophotonic circuits. Nat Photonics 11, 441-446 (2017). doi: 10.1038/nphoton.2017.93

    CrossRef Google Scholar

    [26] Schmidhuber J. Deep learning in neural networks: an overview. Neural Networks 61, 85-117 (2015). doi: 10.1016/j.neunet.2014.09.003

    CrossRef Google Scholar

    [27] Hazlett H C, Gu H B, Munsell B C, Kim S H, Styner M et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 542, 348-351 (2017). doi: 10.1038/nature21369

    CrossRef Google Scholar

    [28] Goodfellow I, Bengio Y, Courville A. Deep Learning (MIT Press, Cambridge, 2016).

    Google Scholar

    [29] He X N, Chua T S. Neural factorization machines for sparse predictive analytics. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval 355-364 (ACM, 2017); http://doi.org/10.1145/3077136.3080777

    Google Scholar

    [30] Zhao N, Zhang H W, Hong R C, Wang M, Chua T S. VideoWhisper: toward discriminative unsupervised video feature learning with attention-based recurrent neural networks. IEEE Trans Multimed 19, 2080-2092 (2017). doi: 10.1109/TMM.2017.2722687

    CrossRef Google Scholar

    [31] Fu J, Luo H Y, Feng J S, Low K H, Chua T S. DrMAD: distilling reverse-mode automatic differentiation for optimizing hyperparameters of deep neural networks. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence 1469-1475 (IJCAI, 2016).

    Google Scholar

    [32] Jo Y, Park S, Jung J, Yoon J, Joo H et al. Holographic deep learning for rapid optical screening of anthrax spores. Sci Adv 3, e1700606 (2017). doi: 10.1126/sciadv.1700606

    CrossRef Google Scholar

    [33] Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi M G et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat Commun 3, 745 (2012). doi: 10.1038/ncomms1747

    CrossRef Google Scholar

    [34] Humar M, Yun S H. Intracellular microlasers. Nat Photonics 9, 572-576 (2015). doi: 10.1038/nphoton.2015.129

    CrossRef Google Scholar

    [35] Huang B, Wang W Q, Bates M, Zhuang X W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810-813 (2008). doi: 10.1126/science.1153529

    CrossRef Google Scholar

    [36] Du Z R, Chen L W, Kao T S, Wu M X, Hong M H. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. Beilstein J Nanotechnol 6, 1199-1204 (2015). doi: 10.3762/bjnano.6.122

    CrossRef Google Scholar

    [37] Yin J, Cao Y, Li Y H, Liao S K, Zhang L et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140-1144 (2017). doi: 10.1126/science.aan3211

    CrossRef Google Scholar

    [38] Memon Q, Ahmed M, Ali S, Memon A R, Shah W. Self-driving and driver relaxing vehicle. In Proceedings of 2016 2nd International Conference on Robotics and Artificial Intelligence, 170-174 (IEEE, 2016); https://doi.org/10.1109/ICRAI.2016.7791248.

    Google Scholar

    [39] Bates M, Huang B, Dempsey G T, Zhuang X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749-1753 (2007). doi: 10.1126/science.1146598

    CrossRef Google Scholar

    [40] Paniccia M. Integrating silicon photonics. Nat Photonics 4, 498-499 (2010). doi: 10.1038/nphoton.2010.189

    CrossRef Google Scholar

    [41] Sun C, Wade M T, Lee Y, Orcutt J S, Alloatti L et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534-538 (2015). doi: 10.1038/nature16454

    CrossRef Google Scholar

    [42] Luther-Davies B. Integrated optics: flexible chalcogenide photonics. Nat Photonics 8, 591-593 (2014). doi: 10.1038/nphoton.2014.169

    CrossRef Google Scholar

  • Supplementary information for Multifunctional inverse sensing by spatial distribution characterization of scattering photons
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(7696) PDF downloads(2556) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint