Fu Z L, Li R Z, Li H Y, et al. Research progress of imaging technology based on terahertz quantum well photodetector[J]. Opto-Electron Eng, 2020, 47(5): 190667. doi: 10.12086/oee.2020.190667
Citation: Fu Z L, Li R Z, Li H Y, et al. Research progress of imaging technology based on terahertz quantum well photodetector[J]. Opto-Electron Eng, 2020, 47(5): 190667. doi: 10.12086/oee.2020.190667

Research progress of imaging technology based on terahertz quantum well photodetector

    Fund Project: Supported by National Key R & D Program of China (2017YFF0106302), National Natural Science Foundation of China (61927813, 61975225, 61875220, 61775229), the Fundamental Frontier Scientific Research Program of the Chinese Academy of Sciences (ZDBS-LY-JSC009), and Shanghai Sailing Program (17YF1429900)
More Information
  • Terahertz (THz) waves have a good transmissivity through non-polar materials, and have no ionization effects on biomedical tissues. Therefore, it is ideal for the applications such as non-destructive testing and biomedical imaging. The imaging system based on THz quantum well photodetectors (THz QWPs) has higher imaging resolution, faster imaging speed, higher signal-to-noise ratio, and more compact structure than the imaging systems based on other detectors, as the THz QWPs have fast response, high responsivity, low noise equivalent power, and tiny size. This paper reviews the research progress of the imaging technology based on THz QWPs. And the factors affecting the core indicators of the imaging system are analyzed and summarized. Using more stable fixtures to mount the THz QWPs, improving the device response speed, detection sensitivity, array size, can improve the key performance of imaging systems effectively.
  • 加载中
  • [1] Abbott D, Zhang X C. Special issue on T-ray imaging, sensing, and retection[J]. Proceedings of the IEEE, 2007, 95(8): 1509–1513. doi: 10.1109/JPROC.2007.900894

    CrossRef Google Scholar

    [2] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716–1718. doi: 10.1364/OL.20.001716

    CrossRef Google Scholar

    [3] Shi S C, Paine S, Yao Q J, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica[J]. Nature Astronomy, 2016, 1: 0001.

    Google Scholar

    [4] Luukanen A, Appleby R, Kemp M, et al. Millimeter-wave and terahertz imaging in security applications[M]//Peiponen K E, Zeitler A, Kuwata-Gonokami M. Terahertz Spectroscopy and Imaging. Berlin, Heidelberg: Springer, 2012: 491–520.

    Google Scholar

    [5] Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810–824. doi: 10.1016/j.tibtech.2016.04.008

    CrossRef Google Scholar

    [6] Zhou Z T, Zhou T, Zhang S Q, et al. Multicolor T-ray imaging using multispectral metamaterials[J]. Advanced Science, 2018, 5(7): 1700982. doi: 10.1002/advs.201700982

    CrossRef Google Scholar

    [7] Abraham E, Younus A, Delagnes J C, et al. Non-invasive investigation of art paintings by terahertz imaging[J]. Applied Physics A, 2010, 100(3): 585–590. doi: 10.1007/s00339-010-5642-z

    CrossRef Google Scholar

    [8] Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantum-well photodetector[J]. Applied Physics Letters, 2004, 84(20): 4068–4070. doi: 10.1063/1.1751620

    CrossRef Google Scholar

    [9] Guo X G, Tan Z Y, Cao J C, et al. Many-body effects on terahertz quantum well detectors[J]. Applied Physics Letters, 2009, 94(20): 201101. doi: 10.1063/1.3134485

    CrossRef Google Scholar

    [10] Guo X G, Cao J C, Zhang R, et al. Recent progress in terahertz quantum-well photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500508. doi: 10.1109/JSTQE.2012.2201136

    CrossRef Google Scholar

    [11] 郭旭光, 顾亮亮, 符张龙, 等.太赫兹量子阱探测器研究[J].激光与光电子学进展, 2015, 52(9): 092302.

    Google Scholar

    Guo X G, Gu L L, Fu Z L, et al. Research on terahertz quantum-well photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092302.

    Google Scholar

    [12] Zhang S, Wang T M, Hao M R, et al. Terahertz quantum-well photodetectors: design, performance, and improvements[J]. Journal of Applied Physics, 2013, 114(19): 194507. doi: 10.1063/1.4826625

    CrossRef Google Scholar

    [13] 邵棣祥, 郭旭光, 张戎, 等.多体效应对太赫兹量子阱探测器的影响[J].光学学报, 2017, 37(10): 1004001.

    Google Scholar

    Shao D X, Guo X G, Zhang R, et al. Influence of many-body effect on terahertz quantum well photodetectors[J]. Acta Optica Sinica, 2017, 37(10): 1004001.

    Google Scholar

    [14] Zhang Y M, Chen H B, Li Z F, et al. The optical coupling improvement of THz quantum well infrared photodetectors based on the plasmonic induced near-field effect[J]. Physica B: Condensed Matter, 2010, 405(2): 552–554. doi: 10.1016/j.physb.2009.09.063

    CrossRef Google Scholar

    [15] Zhang R, Guo X G, Song C Y, et al. Metal-grating-coupled terahertz quantum-well photodetectors[J]. IEEE Electron Device Letters, 2011, 32(5): 659–661. doi: 10.1109/LED.2011.2112632

    CrossRef Google Scholar

    [16] Zhang R, Guo X G, Cao J C. Coupling efficiency of lamellar gratings for terahertz quantum-well photodetectors[J]. Journal of the Korean Physical Society, 2012, 60(8): 1233–1237. doi: 10.3938/jkps.60.1233

    CrossRef Google Scholar

    [17] Zhang R, Guo X G, Cao J C, et al. Asymmetric Fabry-Perot oscillations in metal grating-coupled terahertz quantum well photodetectors[J]. IEEE Journal of Quantum Electronics, 2012, 48(9): 1214–1219. doi: 10.1109/JQE.2012.2206798

    CrossRef Google Scholar

    [18] Zhang R, Fu Z L, Gu L L, et al. Terahertz quantum well photodetectors with reflection-grating couplers[J]. Applied Physics Letters, 2014, 105(23): 231123. doi: 10.1063/1.4904221

    CrossRef Google Scholar

    [19] Zhang R, Shao D X, Fu Z L, et al. Terahertz quantum well photodetectors with metal-grating couplers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 3800407.

    Google Scholar

    [20] Li L J, Bai P, Zhang Y H, et al. Optical field simulation of edge coupled terahertz quantum well photodetectors[J]. AIP Advances, 2018, 8(3): 035214. doi: 10.1063/1.5011956

    CrossRef Google Scholar

    [21] Zhang Z Z, Fu Z L, Guo X G, et al. 4.3 THz quantum-well photodetectors with high detection sensitivity[J]. Chinese Physics B, 2018, 27(3): 030701. doi: 10.1088/1674-1056/27/3/030701

    CrossRef Google Scholar

    [22] Shao D X, Zhang R, Fu Z L, et al. High responsivity random metal grating couplers for terahertz quantum well photodetectors[J]. Semiconductor Science and Technology, 2019, 34(7): 075029. doi: 10.1088/1361-6641/ab0a4a

    CrossRef Google Scholar

    [23] Palaferri D, Todorov Y, Chen Y N, et al. Patch antenna terahertz photodetectors[J]. Applied Physics Letters, 2015, 106: 161102. doi: 10.1063/1.4918983

    CrossRef Google Scholar

    [24] Li H, Wan W J, Tan Z Y, et al. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors[J]. Scientific Reports, 2017, 7(1): 3452. doi: 10.1038/s41598-017-03787-6

    CrossRef Google Scholar

    [25] Tan Z Y, Li H, Wan W J, et al. Direct detection of a fast modulated terahertz light with a spectrally matched quantum-well photodetector[J]. Electronics Letters, 2017, 53(2): 91–93. doi: 10.1049/el.2016.3099

    CrossRef Google Scholar

    [26] 张真真, 黎华, 曹俊诚.高速太赫兹探测器[J].物理学报, 2018, 67(9): 090702.

    Google Scholar

    Zhang Z Z, Li H, Cao J C. Ultrafast terahertz detectors[J]. Acta Physica Sinica, 2018, 67(9): 090702.

    Google Scholar

    [27] Luo H, Liu H C, Song C Y, et al. Background-limited terahertz quantum-well photodetector[J]. Applied Physics Letters, 2005, 86(23): 231103. doi: 10.1063/1.1947377

    CrossRef Google Scholar

    [28] Jia J Y, Gao J H, Hao M R, et al. Dark current mechanism of terahertz quantum-well photodetectors[J]. Journal of Applied Physics, 2014, 116(15): 154501. doi: 10.1063/1.4898036

    CrossRef Google Scholar

    [29] Jia J Y, Wang T M, Zhang Y H, et al. High-temperature photon-noise-limited performance terahertz quantum-well photodetectors[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(5): 715–724. doi: 10.1109/TTHZ.2015.2453632

    CrossRef Google Scholar

    [30] Wang H X, Fu Z L, Shao D X, et al. Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well[J]. Applied Physics Letters, 2018, 113(17): 171107. doi: 10.1063/1.5046881

    CrossRef Google Scholar

    [31] Cao J C, Chen Y L, Liu H C. Effect of optical phonons on the spectral shape of terahertz quantum-well photodetectors[J]. Superlattices and Microstructures, 2006, 40(2): 119–124. doi: 10.1016/j.spmi.2006.06.001

    CrossRef Google Scholar

    [32] Xiong F, Guo X G, Cao J C. Simulation of photocurrents of terahertz quantum-well photodetectors[J]. Chinese Physics Letters, 2008, 25(5): 1895–1897. doi: 10.1088/0256-307X/25/5/102

    CrossRef Google Scholar

    [33] Guo X G, Zhang R, Liu H C, et al. Photocurrent spectra of heavily doped terahertz quantum well photodetectors[J]. Applied Physics Letters, 2010, 97(2): 021114. doi: 10.1063/1.3458829

    CrossRef Google Scholar

    [34] Gu L L, Zhang R, Tan Z Y, et al. Terahertz quantum well photo-detectors: grating versus 45° facet coupling[J]. Journal of Physics D: Applied Physics, 2014, 47(16): 165101. doi: 10.1088/0022-3727/47/16/165101

    CrossRef Google Scholar

    [35] Gu L L, Guo X G, Fu Z L, et al. Optical-phonon-mediated photocurrent in terahertz quantum-well photodetectors[J]. Applied Physics Letters, 2015, 106(11): 111107. doi: 10.1063/1.4916084

    CrossRef Google Scholar

    [36] Yu C H, Zhang B, Lu W, et al. Strong enhancement of terahertz response in GaAs/AlGaAs quantum well photodetector by magnetic field[J]. Applied Physics Letters, 2010, 97(2): 022102. doi: 10.1063/1.3462300

    CrossRef Google Scholar

    [37] Yu C H, Zhang B, Luo X D, et al. Wide tunability and electron transfer in GaAs/AlGaAs quantum well photodetector by magnetic field[J]. Applied Physics Letters, 2017, 110(19): 192102. doi: 10.1063/1.4983218

    CrossRef Google Scholar

    [38] Yu C H, Li L, Xu T F, et al. Strong terahertz response in quantum well photodetector based on intradonor transition by magnetic field[J]. AIP Advances, 2018, 8(12): 125014. doi: 10.1063/1.5051203

    CrossRef Google Scholar

    [39] Zhang G X, Guo X G, Wang H X, et al. Bias-polarity-dependent photocurrent spectra of terahertz stepped-quantum-well photodetectors[J]. Physical Review Applied, 2019, 12(2): 024035. doi: 10.1103/PhysRevApplied.12.024035

    CrossRef Google Scholar

    [40] Zhou T, Zhang R, Guo X G, et al. Terahertz imaging with quantum-well photodetectors[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1109–1111. doi: 10.1109/LPT.2012.2196033

    CrossRef Google Scholar

    [41] Tan Z Y, Zhou T, Cao J C, et al. Terahertz imaging with quantum-cascade laser and quantum-well photodetector[J]. IEEE Photonics Technology Letters, 2013, 25(14): 1344–1346. doi: 10.1109/LPT.2013.2265303

    CrossRef Google Scholar

    [42] Tan Z Y, Zhou T, Fu Z L, et al. Reflection imaging with terahertz quantum-cascade laser and quantum-well photodetector[J]. Electronics Letters, 2014, 50(5): 389–391. doi: 10.1049/el.2013.4079

    CrossRef Google Scholar

    [43] Qiu F C, Tan Z Y, Wang C, et al. Terahertz optical scanning imaging of motionless polyurethane insulation materials[J]. Electronics Letters, 2019, 55(19): 1053–1055. doi: 10.1049/el.2019.2282

    CrossRef Google Scholar

    [44] Zhou T, Tan Z Y, Gu L, et al. Three-dimensional imaging with terahertz quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2015, 51(1): 85–86. doi: 10.1049/el.2014.3873

    CrossRef Google Scholar

    [45] Qiu F C, Tan Z Y, Fu Z L, et al. Reflective scanning imaging based on a fast terahertz photodetector[J]. Optics Communications, 2018, 427: 170–174. doi: 10.1016/j.optcom.2018.06.030

    CrossRef Google Scholar

    [46] Qiu F C, Fu Y Z, Wang C, et al. Fast terahertz reflective confocal scanning imaging with a quantum cascade laser and a photodetector[J]. Applied Physics B, 2019, 125(5): 86. doi: 10.1007/s00340-019-7198-8

    CrossRef Google Scholar

    [47] Fu Z L, Gu L L, Guo X G, et al. Frequency up-conversion photon-type terahertz imager[J]. Scientific Reports, 2016, 6: 25383. doi: 10.1038/srep25383

    CrossRef Google Scholar

    [48] 符张龙, 邵棣祥, 张真真, 等.太赫兹频率上转换成像器件研究[J].深圳大学学报理工版, 2019, 36(2): 147–151.

    Google Scholar

    Fu Z L, Shao D X, Zhang Z Z, et al. Terahertz frequency up-conversion imaging devices[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 147–151.

    Google Scholar

  • Overview: Terahertz (THz) waves have a good transmissivity on non-polar materials and no ionization effects on biomedical tissues. Therefore it is ideal for the applications such as non-destructive testing and biomedical imaging. The imaging system based on THz quantum well photodetectors (THz QWPs) has higher imaging resolution, faster imaging speed, higher signal-to-noise ratio (SNR), and more compact structure as the THz QWPs have fast response, high responsivity, low noise equivalent power, and tiny size. This paper reviews the research progress of the imaging system based on THz QWPs. The direct transmission and direct reflection imaging systems have simple light paths, and the 3D imaging system can obtain 3D information of objects. However, the imaging speed, the resolution and SNR are low. The archimedean spiral scanning imaging system progressed in imaging speed, but the resolution is still not high. The confocal scanning imaging system has a short imaging time and a relatively high imaging resolution, nevertheless, the SNR is low. The pixel-less imaging system has a diffraction-limited resolution, extremely short imaging time, and high SNR, is the most promising one above. There are some tips for system performance improvement. First, the imaging resolution can be optimized by the optical confocal methods. Second, the large imaging area can be achieved by optimized optical path design. Third, high imaging speed can be achieved with no mechanical stop scanning, multi-pixels detectors, or reducing signal acquisition time with an ultrafast detector. Forth, the SNR is mainly relying on the steady optical path, optical source power, and detector sensitivity. However, these factors are always competitive, a trade-off must be made to achieve an optimized imaging solution for a specific application. It improves the light output stability and beam quality with a more stable fixture for the source and the detector mounting. The improvement of the detector response speed, detection sensitivity, and array size are also working. It is believed that the THz imaging will become faster (real-time/ultra-fast), more accurate (higher resolution), and simpler (lower systems complexity) with these efforts. And it will play an important role in biomedical and industrial imaging in the future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(26191) PDF downloads(2957) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint