Dai C W, Yan C, Zeng Q Y, et al. A method of designing new Bessel beam generator[J]. Opto-Electron Eng, 2020, 47(6): 190190. doi: 10.12086/oee.2020.190190
Citation: Dai C W, Yan C, Zeng Q Y, et al. A method of designing new Bessel beam generator[J]. Opto-Electron Eng, 2020, 47(6): 190190. doi: 10.12086/oee.2020.190190

A method of designing new Bessel beam generator

    Fund Project: Supported by National Natural Science Foundation of China (61138002, 61622508)
More Information
  • Catenary nanostructures enable continuous phase control. However, the ordinary catenary nanostructure has narrow width at both ends and is not easy to be fabricated. On the other side, it was difficult to build complex model directly in simulation software CST, and the simulation process was complicated in the past. The equal-width catenary slit is proposed to replace the normal catenary slit. And the equal-width catenary-type metasurface has been designed to generate Bessel beam, which provides a new idea for the design of two-dimensional optical devices. In the process of modeling and simulation, CST is combined with Matlab for co-simulation, and all operations, such as modeling, simulations, and parameter modification, are completed directly in Matlab. This method can be used to design complex structures, and more ideal simulation results can be obtained combined with the numerical optimization ability of Matlab.
  • 加载中
  • [1] Durnin J. Exact solutions for nondiffracting beams. Ⅰ. The scalar theory[J]. Journal of the Optical Society of America A, 1987, 4(4): 651-654. doi: 10.1364/JOSAA.4.000651

    CrossRef Google Scholar

    [2] Moreno I, Davis J A, Sánchez-López M M, et al. Nondiffracting Bessel beams with polarization state that varies with propagation distance[J]. Optics Letters, 2015, 40(23): 5451-5454. doi: 10.1364/OL.40.005451

    CrossRef Google Scholar

    [3] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808. doi: 10.1038/nphoton.2015.201

    CrossRef Google Scholar

    [4] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [5] Pu M B, Zhao Z Y, Wang Y Q, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822. doi: 10.1038/srep09822

    CrossRef Google Scholar

    [6] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [8] Zhang J, Mei Z L, Zhang W R, et al. An ultrathin directional carpet cloak based on generalized Snell's law[J]. Applied Physics Letters, 2013, 103(15): 151115. doi: 10.1063/1.4824898

    CrossRef Google Scholar

    [9] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780. doi: 10.1126/science.1126493

    CrossRef Google Scholar

    [10] Ma X L, Pu M B, Li X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto-Electronic Advances, 2019, 2(3): 180023.

    Google Scholar

    [11] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009.

    Google Scholar

    [12] Rahmani M, Leo G, Brener I, et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication[J]. Opto-Electronic Advances, 2018, 1(10): 180021.

    Google Scholar

    [13] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    Google Scholar

    [14] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255-275.

    Google Scholar

    [15] Jin J J, Luo J, Zhang X H, et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 2016, 6: 24286. doi: 10.1038/srep24286

    CrossRef Google Scholar

    [16] Gao H, Pu M B, Li X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Express, 2017, 25(12): 13933-13943. doi: 10.1364/OE.25.013933

    CrossRef Google Scholar

    [17] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6(6): e16276.

    Google Scholar

    [18] Li X, Pu M B, Zhao Z Y, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524

    CrossRef Google Scholar

    [19] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [20] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328-330. doi: 10.1063/1.1539300

    CrossRef Google Scholar

  • Overview: The metasurface is an ultra-thin two-dimensional material arranged by metal or dielectric subwavelength structures. Phase-modulated metasurface is an important branch of metasurfaces, which mainly includes propagation, geometric, and circuit-type phase metasurfaces. The phase modulation of incident circular polarization can be realized in geometric phase metasurfaces by using the spatially varying subwavelength structure. Usually, the geometric phase metasurface is realized by discrete structures whose rotation angle has a correspondence with the geometric phase. However, discrete elements can only generate discrete phase distributions. Catenary is a kind of mechanical curves. The geometric phase metasurfaces composed of catenary structures can realize continuous geometric phase. The catenary metasurface is composed of catenary slits etched on the metal film. The slit is translated down by a catenary and the two ends are connected. Similar to discrete metasurfaces, catenary slits can be considered as a patchwork of discrete elements. The tangent angle of the catenary corresponds to the rotation angle of the coordinate system of the discrete element. As described above, catenary slit is composed of vertical-translated catenary, so both ends of the slit will be very narrow, which is not conducive to experimental processing. Therefore, it is necessary to design equal-width catenary metasurfaces. On the other hand, in the design and simulation of the metasurfaces, CST is usually used for modeling and simulations. When designing V-shaped antennas, rectangular apertures, and other subwavelength structures such as normal catenary slits, the modeling process can be performed directly in CST. However, it is more complex for equal-width catenary slits and other irregularly shaped structures. On the other hand, when it comes to the need to optimize the arrangement of subwavelength element array, it is necessary to repeatedly model in CST, but to analyze data and optimize the structure in Matlab, which will affect the work efficiency. In previous studies, researchers have proposed co-simulation with Matlab and CST. Because of the software version, the purpose of the work, and the CST's numerous underlying commands, however, it is difficult to reproduce. In this paper, when designing the catenary metasurfaces, Matlab R2016b is used to call CST Microwave Studio version 2016 for modeling and simulations. A two-dimensional Bessel beam generator composed of an array of equal-width catenary slits is obtained. This article also tells the details of the co-simulation, so that researchers can better apply it to their own work.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(7309) PDF downloads(3139) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint