He F T, Fang W, Zhang J L, et al. Analysis of the transmission characteristics of Hank-Bessel beam in anisotropic ocean turbulence[J]. Opto-Electron Eng, 2020, 47(6): 190591. doi: 10.12086/oee.2020.190591
Citation: He F T, Fang W, Zhang J L, et al. Analysis of the transmission characteristics of Hank-Bessel beam in anisotropic ocean turbulence[J]. Opto-Electron Eng, 2020, 47(6): 190591. doi: 10.12086/oee.2020.190591

Analysis of the transmission characteristics of Hank-Bessel beam in anisotropic ocean turbulence

    Fund Project: Supported by National Natural Science Foundation of China (61805199), the National Defense Innovation Special Zone Project of Science and Technology of China (18-H 863-01-ZT-001-004-02), the National Natural Science Foundation of Shaanxi (2018JQ6065), and National Key Laboratory Project of Underwater Information and Control (XK-01-61-KS-0176)
More Information
  • Based on the Rytov approximation theory, we analyze the cross-spectral density of Hankel-Bessel (HB) beams in anisotropic ocean turbulence. In this paper, we study the orbital angular momentum (OAM) mode detection probability, the crosstalk probability and the spiral phase spectrum of the HB beam, and establish the OAM mode detection probability model in anisotropic ocean turbulence. The results show that the detection probability of the emission mode is decreased and the spiral phase spectrum is expanded due to the ocean turbulence. Furthermore, with the increase of anisotropy factor, the influence of ocean turbulence on the detection probability of HB beam becomes smaller. Meanwhile, with the increase of the temperature variance dissipation rate and the equilibrium parameter, and the decrease of the dynamic energy dissipation rate, the influence of ocean turbulence on the orbital angular momentum transmission is increased.
  • 加载中
  • [1] Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6(8): 33306.

    Google Scholar

    [2] Baykal Y. Intensity fluctuations of multimode laser beams in underwater medium[J]. Journal of the Optical Society of America A, 2015, 32(4): 593-598. doi: 10.1364/JOSAA.32.000593

    CrossRef Google Scholar

    [3] Wu Y Q, Zhang Y X, Li Y, et al. Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence[J]. Optics Communications, 2016, 371: 59-66. doi: 10.1016/j.optcom.2016.03.041

    CrossRef Google Scholar

    [4] Nikishov V V, Nikishov V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1): 82–98. doi: 10.1615/InterJFluidMechRes.v27.i1.70

    CrossRef Google Scholar

    [5] Cheng M J, Guo L X, Li J T, et al. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean[J]. Applied Optics, 2016, 55(17): 4642-4648. doi: 10.1364/AO.55.004642

    CrossRef Google Scholar

    [6] 尹霄丽, 郭翊麟, 闫浩, 等.汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析[J].物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155

    CrossRef Google Scholar

    Yin X L, Guo Y L, Yan H, et al. Analysis of orbital angular momentum spectra of Hankel-Bessel beams in channels with oceanic turbulence[J]. Acta Physica Sinica, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155

    CrossRef Google Scholar

    [7] 刘会龙, 胡总华, 夏菁, 等.无衍射光束的产生及其应用[J].物理学报, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227

    CrossRef Google Scholar

    Liu H L, Hu Z H, Xia J, et al. Generation of non-diffracting beam and its application[J]. Acta Physica Sinica, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227

    CrossRef Google Scholar

    [8] Lu L, Ji X L, Baykal Y. Wave structure function and spatial coherence radius of plane and spherical waves propagating through oceanic turbulence[J]. Optics Express, 2014, 22(22): 27112-27122. doi: 10.1364/OE.22.027112

    CrossRef Google Scholar

    [9] Kotlyar V V, Kovalev A A, Soifer V A. Superpositions of asymmetrical Bessel beams[J]. Journal of the Optical Society of America A, 2015, 32(6): 1046-1052. doi: 10.1364/JOSAA.32.001046

    CrossRef Google Scholar

    [10] Yousefi M, Golmohammady S, Mashal A, et al. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence[J]. Journal of the Optical Society of America A, 2015, 32(11): 1982-1992. doi: 10.1364/JOSAA.32.001982

    CrossRef Google Scholar

    [11] 柯熙政, 胥俊宇.涡旋光束轨道角动量干涉及检测的研究[J].中国激光, 2016, 43(9): 192-197.

    Google Scholar

    Ke X Z, Xu J Y. Interference and detection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2016, 43(9): 192-197.

    Google Scholar

    [12] Li Y, Zhang Y X, Zhu Y, et al. Effects of anisotropic turbulence on average polarizability of Gaussian Schell-model quantized beams through ocean link[J]. Applied Optics, 2016, 55(19): 5234-5239. doi: 10.1364/AO.55.005234

    CrossRef Google Scholar

    [13] Huang X W, Deng Z X, Shi X H, et al. Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy[J]. Optics Express, 2018, 26(4): 4786-4797. doi: 10.1364/OE.26.004786

    CrossRef Google Scholar

    [14] Chen M Y, Zhang Y X. Effects of anisotropic oceanic turbulence on the propagation of the OAM mode of a partially coherent modified Bessel correlated vortex beam[J]. Waves in Random and Complex Media, 2019, 29(4): 694-705. doi: 10.1080/17455030.2018.1464234

    CrossRef Google Scholar

    [15] Li Y, Yu L, Zhang Y X. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean[J]. Optics Express, 2017, 25(11): 12203-12215. doi: 10.1364/OE.25.012203

    CrossRef Google Scholar

    [16] Wu G H, Tong C M, Cheng M J, et al. Superimposed orbital angular momentum mode of multiple Hankel-Bessel beam propagation in anisotropic non-Kolmogorov turbulence[J]. Chinese Optics Letters, 2016, 14(8): 080102. doi: 10.3788/COL201614.080102

    CrossRef Google Scholar

    [17] Zhu Y, Liu X J, Gao J, et al. Probability density of the orbital angular momentum mode of Hankel-Bessel beams in an atmospheric turbulence[J]. Optics Express, 2014, 22(7): 7765-7772. doi: 10.1364/OE.22.007765

    CrossRef Google Scholar

    [18] Doster T, Watnik A T. Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: analysis of channel efficiency[J]. Applied Optics, 2016, 55(36): 10239-10246. doi: 10.1364/AO.55.010239

    CrossRef Google Scholar

    [19] Yan X, Guo L X, Cheng M J, et al. Probability density of orbital angular momentum mode of autofocusing Airy beam carrying power-exponent-phase vortex through weak anisotropic atmosphere turbulence[J]. Optics Express, 2017, 25(13): 15286-15298. doi: 10.1364/OE.25.015286

    CrossRef Google Scholar

    [20] Jeeffrey A, Zwillinger D. Table of Integrals, Series, and Products[M]. 7th ed. Beijing: Academic Press, 2007: 485-509.

    Google Scholar

  • Overview: The orbital angular momentum (OAM) is carried to Hank-Bessel (HB) vortex beam, and the HB vortex beam has non-diffracting nature and self-focusing properties, for instance, it does not change without diffracting propagation. Lateral intensity distribution can be reconstructed when the HB beam encounter obstacles. With the development of underwater wireless optical communication (UOWC) technology, the OAM-carrying beam is used to study high-capacity and ultra-high-speed underwater wireless optical communication. Different OAM modes are orthogonal to each other, and the channel capacity of the underwater wireless optical communication link can be improved by using the orbital angular momentum spatial multiplexing technique. Consequently, HB vortex beams can be used as the carriers to increase the channel capacity of information transmission. However, due to the rotation of the earth, the OAM mode crosstalk of the vortex beam is caused by the anisotropic ocean turbulence when the beam is transmitted in ocean. The effects include beam point jitter, intensity and phase fluctuation and damage beam pattern. Thereby, the detection probability of transmitting OAM is reduced, and the error rate of the underwater wireless optical communication link is increased. Therefore, in this paper, the spiral phase spectrum of the HB vortex beam in an anisotropic ocean turbulent channel is studied. Firstly, based on the Rytov approximation theory, the cross-spectral density of HB beams in anisotropic ocean turbulence is analyzed, and the influence of anisotropic ocean turbulence on HB beam propagation is studied. An OAM crosstalk model of HB beam in anisotropic ocean turbulence is established by analyzing the spiral phase spectrum of HB beams in anisotropy ocean turbulence. The relationship between mode crosstalk and equilibrium parameters, temperature variance dissipation rate, dynamic energy dissipation rate is discussed, and compared with the transmission characteristics of HB beams in isotropic ocean turbulence. The results show that the detection probability of the emission mode is decreased and the spiral phase spectrum is expanded due to the ocean turbulence. Furthermore, with the increases of anisotropy factor, the influence of ocean turbulence on the detection probability of HB beam becomes smaller. Meanwhile, with the increase of the temperature variance dissipation rate and the equilibrium parameter, and the decrease of the dynamic energy dissipation rate, the influence of ocean turbulence on the orbital angular momentum transmission is increased. In the same way, with the increase of the temperature variance dissipation rate and the equilibrium parameter, and the decrease of the dynamic energy dissipation rate, the spatial coherence length in oceanic turbulence decreases is increased. Moreover, OAM mode detection probability, the crosstalk probability and the spiral phase spectrum of the HB beam are more negatively affected by ocean turbulence dominated by saliniy fluctuations.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(7296) PDF downloads(2053) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint