Nie F S, Jiang M L, Zhang M S, et al. Orbital angular momentum Talbot array illuminator based on detour phase encoding[J]. Opto-Electron Eng, 2020, 47(6): 200093. doi: 10.12086/oee.2020.200093
Citation: Nie F S, Jiang M L, Zhang M S, et al. Orbital angular momentum Talbot array illuminator based on detour phase encoding[J]. Opto-Electron Eng, 2020, 47(6): 200093. doi: 10.12086/oee.2020.200093

Orbital angular momentum Talbot array illuminator based on detour phase encoding

    Fund Project: Supported by National Natural Science Foundation of China (61605061, 61875073), the Natural Science Foundation of Guangdong Province (2016A030313088), and Guangdong Provincial Innovation and Entrepreneurship Project (2016ZT06D081)
More Information
  • Orbital angular momentum (OAM) beam with helical phase distribution has demonstrated important applications in information optics, optical trapping, and optical manipulation. In this paper, we designed a planar optical device which can generate a periodic array of focused orbital angular momentum beams. Based on detour phase encoding, the phase distribution calculated by fractional Talbot effect is implemented on this planar optical device. The property of this optical device with periodic square and hexagonal structures is simulated by finite difference time domain (FDTD) respectively. The optical device with explicit advantages of being easy to fabricate, splice, duplicate, and integrate can efficiently prop up the generation of high-quality large-area array-type OAM beams.
  • 加载中
  • [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [2] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [3] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548. doi: 10.1126/science.1237861

    CrossRef Google Scholar

    [4] Vallone G, D'Ambrosio V, Sponselli A, et al. Free-space quantum key distribution by rotation-invariant twisted photons[J]. Physical Review Letters, 2014, 113(6): 060503. doi: 10.1103/PhysRevLett.113.060503

    CrossRef Google Scholar

    [5] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [6] 曹耀宇, 谢飞, 张鹏达, 等.双光束超分辨激光直写纳米加工技术[J].光电工程, 2017, 44(12): 1133-1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133-1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    [7] Lehmuskero A, Li Y M, Johansson P, et al. Plasmonic particles set into fast orbital motion by an optical vortex beam[J]. Optics Express, 2014, 22(4): 4349-4356. doi: 10.1364/OE.22.004349

    CrossRef Google Scholar

    [8] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816. doi: 10.1038/nature01935

    CrossRef Google Scholar

    [9] Tao S H, Yuan X C, Lin J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726-7731. doi: 10.1364/OPEX.13.007726

    CrossRef Google Scholar

    [10] Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays[J]. Optics Express, 2004, 12(6): 1144-1149. doi: 10.1364/OPEX.12.001144

    CrossRef Google Scholar

    [11] Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 2017, 6(7): e17011.

    Google Scholar

    [12] Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 2019, 11(5): 2447-2452. doi: 10.1039/C8NR09192G

    CrossRef Google Scholar

    [13] Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567-570. doi: 10.1364/OPTICA.2.000567

    CrossRef Google Scholar

    [14] 欧阳旭, 徐毅, 冼铭聪, 等.基于无序金纳米棒编码的多维光信息存储[J].光电工程, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

    CrossRef Google Scholar

    Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

    CrossRef Google Scholar

    [15] 姜美玲, 张明偲, 李向平, 等.超分辨光存储研究进展[J].光电工程, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649

    CrossRef Google Scholar

    Jiang M L, Zhang M S, Li X P, et al. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649

    CrossRef Google Scholar

    [16] Campbell G, Hage B, Buchler B, et al. Generation of high-order optical vortices using directly machined spiral phase mirrors[J]. Applied Optics, 2012, 51(7): 873-876. doi: 10.1364/AO.51.000873

    CrossRef Google Scholar

    [17] Wei D Z, Wu Y, Wang Y M, et al. Survival of the orbital angular momentum of light through an extraordinary optical transmission process in the paraxial approximation[J]. Optics Express, 2016, 24(11): 12007-12012. doi: 10.1364/OE.24.012007

    CrossRef Google Scholar

    [18] Beresna M, Gecevičius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101. doi: 10.1063/1.3590716

    CrossRef Google Scholar

    [19] Nersisyan S R, Tabiryan N V, Mawet D, et al. Improving vector vortex waveplates for high-contrast coronagraphy[J]. Optics Express, 2013, 21(7): 8205-8213. doi: 10.1364/OE.21.008205

    CrossRef Google Scholar

    [20] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905

    CrossRef Google Scholar

    [21] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316. doi: 10.1038/35085529

    CrossRef Google Scholar

    [22] Wei B Y, Hu W, Ming Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals[J]. Advanced Materials, 2014, 26(10): 1590-1595. doi: 10.1002/adma.201305198

    CrossRef Google Scholar

    [23] Wang X L, Lou K, Chen J, et al. Unveiling locally linearly polarized vector fields with broken axial symmetry[J]. Physical Review A, 2011, 83(6): 063813. doi: 10.1103/PhysRevA.83.063813

    CrossRef Google Scholar

    [24] Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 2010, 105(25): 253602. doi: 10.1103/PhysRevLett.105.253602

    CrossRef Google Scholar

    [25] Wang X L, Li Y N, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10): 10786-10795. doi: 10.1364/OE.18.010786

    CrossRef Google Scholar

    [26] Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366. doi: 10.1126/science.1226528

    CrossRef Google Scholar

    [27] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [28] Karimi E, Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

    Google Scholar

    [29] Talbot H F. LXXVI. Facts relating to optical science. No. Ⅳ[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1836, 9(56): 401-407. doi: 10.1080/14786443608649032

    CrossRef Google Scholar

    [30] Rayleigh L. XXV. On copying diffraction-gratings, and on some phenomena connected therewith[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 11(67): 196-205. doi: 10.1080/14786448108626995

    CrossRef Google Scholar

    [31] Zhu L W, Yin X, Hong Z P, et al. Reciprocal vector theory for diffractive self-imaging[J]. Journal of the Optical Society of America A, 2008, 25(1): 203-210. doi: 10.1364/JOSAA.25.000203

    CrossRef Google Scholar

    [32] Li Z G, Yang R, Sun M Y, et al. Detour phase Talbot array illuminator[J]. Chinese Optics Letters, 2019, 17(7): 070501. doi: 10.3788/COL201917.070501

    CrossRef Google Scholar

    [33] Brown B R, Lohmann A W. Complex spatial filtering with binary masks[J]. Applied Optics, 1966, 5(6): 967-969. doi: 10.1364/AO.5.000967

    CrossRef Google Scholar

    [34] Lohmann A W, Paris D P. Binary fraunhofer holograms, generated by computer[J]. Applied Optics, 1967, 6(10): 1739-1748. doi: 10.1364/AO.6.001739

    CrossRef Google Scholar

  • Overview: Orbital angular momentum (OAM) beam with helical phase distribution has demonstrated important applications in information optics, optical storage, laser processing, super-resolution, optical trapping, and optical manipulation. These exceptional achievements heavily rely on the development of OAM micro-devices that can precisely manipulate optical fields of demand. As such functional components gradually reach out to large-scale production for practical applications from the laboratory-scale researches, more requirements are raised for producing OAM beams with equal properties in batches. At present, there are varied methods to generate OAM beams, for example, spiral phase plate method, variable spiral plate method, hologram folk grating method, and spatial light modulator method. However, the above methods are mostly focused on generating a single OAM beam, which overlooks the needs of fostering multi-focus array light field that is highly desirable for novel functions in numerous studies. How to readily realize focused OAM arrays beams over a large area remains a tough challenge from concept to implementation. In this paper, based on fractional Talbot effect, we have designed a planar optical device which can generate periodic array of focused orbital angular momentum beam. The phase distribution of the devised structure contains two parts: the focusing lens phase distribution and the spiral vortex phase distribution. According to detour phase encoding, the phase distribution calculated by fractional Talbot effect is implemented on the planar optical device by discretizing the phase distribution with arrayed phase-control units. The multi-level phase distribution is transformed to the lateral displacement of the rectangular bars from the center of each unit cell, which is proportioned to the phase shift as designed. The focusing property of this optical device with periodic square and hexagonal structures are simulated by finite difference time domain (FDTD). The intensity distribution and phase profile of each single focused light beam in the illumination plane are virtually identical. With changing the arrangement of the phase-regulation unit from square to hexagonal Talbot array, the symmetry of the intensity distribution for the focused light spot with vortex phase distribution changes accordingly. The symmetry of the hexagonal Talbot array is higher than the square counterpart. This optical device with explicit advantages of being easy to fabricate, splice, duplicate, and integrate can efficiently prop up the generation of high-quality large-area array-type OAM beams for widely spreading applications in optical trapping, optical manipulation, optical fabrication, and other fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(7883) PDF downloads(2310) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint