微金字塔阵列结构的飞刀切削技术研究

杜丹,黄岳田,范斌. 微金字塔阵列结构的飞刀切削技术研究[J]. 光电工程,2020,47(8):190179. doi: 10.12086/oee.2020.190179
引用本文: 杜丹,黄岳田,范斌. 微金字塔阵列结构的飞刀切削技术研究[J]. 光电工程,2020,47(8):190179. doi: 10.12086/oee.2020.190179
Du D, Huang Y T, Fan B. Research on flying cutting technology with micro pyramid array structure[J]. Opto-Electron Eng, 2020, 47(8): 190179. doi: 10.12086/oee.2020.190179
Citation: Du D, Huang Y T, Fan B. Research on flying cutting technology with micro pyramid array structure[J]. Opto-Electron Eng, 2020, 47(8): 190179. doi: 10.12086/oee.2020.190179

微金字塔阵列结构的飞刀切削技术研究

详细信息
    作者简介:
    通讯作者: 黄岳田(1991-),男,博士,讲师,主要从事光学加工的研究。E-mail:hytsze@qq.com
  • 中图分类号: TH74

Research on flying cutting technology with micro pyramid array structure

More Information
  • 微结构阵列光学元件的加工受到越来越广泛的关注,单点金刚石飞刀切削技术以高效率低成本且加工精度高的优势,逐渐应用于微结构的加工。本文主要研究飞刀切削微金字塔结构时,机床重复定位误差和循环加工引入的误差对微结构切削效果的影响,分析V槽切削时次沟槽产生的条件,研究抑制次沟槽产生方法,实验验证了可以通过控制切削深度大于最小切削深度来抑制次沟槽的产生。

  • Overview: Microstructure optical elements are playing an increasingly important role in optical systems, and the corresponding application needs promote the research of microstructural processing technology. The main processing methods of optical microstructures are optical lithography, electron beam direct writing and focused ion beam etching. These methods all have shortcomings in universality and efficiency of processing materials. Especially for the thin film optical microstructures with gradual profile, when the refractive index of the optical materials changes along the normal direction of the structure, the processing method mentioned above is more complicated and difficult to guarantee the accuracy of the preparation. Single-point diamond flying tool turning has attracted wide attention due to its advantages of high efficiency, low cost and high precision. Considering the linkage of machine tool axis, we use end face flying cut by four axis linkage. The principle of flying cutter turning micro-pyramid structure is profiling, and the shape of the cutter is carved on the surface of the workpiece. This ultra-precision turning method requires strict processing conditions, and any small errors introduced by minor changes will affect the final turning results. For example, the repeated positioning errors of machine tools and the vibration interference in the process of machining will affect the turning surface quality. Especially in the processing of micro-structure arrays with micron size, the ultimate impact is the deviation of tool center, which makes unexpected errors on the turning surface. We study the micro-structure size error caused by tool center deviation. By analyzing the influence of tool center offset on the turning results of micro-V groove in the process of cyclic machining, the reason of secondary groove in V groove turning is obtained, and the method of restraining secondary groove is put forward, that is, controlling the depth of single turning is greater than the error of tool center offset. According to the processing conditions and experiments, the maximum deviation error of the tool center can be obtained, which is the minimum turning depth of the fly cutting when turning the micro-structure. To ensure that the turning depth is greater than this value, the generation of sub-grooves can be restrained. The validity of the theoretical analysis is verified by the experiment of turning micro-V groove and micro-pyramid structure with fly cutting. When the single turning depth is less than the deviation error of tool center, the turning results of micro-V groove and micro-pyramid structure are the same as the theoretical analysis.

  • 加载中
  • 图 1  飞刀切削加工方式

    Figure 1.  The method of fying cutting

    图 2  仿形法飞刀车削微金字塔阵列原理

    Figure 2.  Principle of micro pyramid array turning with flying cutter by copying method

    图 3  V形槽的特征尺寸示意图

    Figure 3.  Characteristic dimension diagram of V-groove

    图 4  刀具中心偏移对V槽切削效果影响

    Figure 4.  Effect of tool center offset on V-groove cutting effect

    图 5  刀具中心偏移量与切削结果示意图

    Figure 5.  Sketch diagram of tool center offset and cutting result

    图 6  V形槽不同切削深度加工结果

    Figure 6.  Machining result of V-groove in different cutting depth

    图 7  微金字塔结构不同切削深度加工结果

    Figure 7.  Machining result of different cutting depth for micro pyramid structure

    表 1  飞刀切削V形槽加工参数

    Table 1.  Machining parameters of flying cutting

    单次切削深度 转速/(r/min) 进给速度/(mm/min)
    200 nm 1000 2
    500 nm 1000 2
    1 mm 1000 2
    下载: 导出CSV
  • [1]

    Laux E, Genet C, Skauli T, et al. Plasmonic photon sorters for spectral and polarimetric imaging[J]. Nature Photonics, 2008, 2(3): 161-164. doi: 10.1038/nphoton.2008.1

    [2]

    Chen Q, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Optics Express, 2010, 18(13): 14056-14062. doi: 10.1364/OE.18.014056

    [3]

    Lee H S, Yoon Y T, Lee S S, et al. Color filter based on a subwavelength patterned metal grating[J]. Optics Express, 2007, 15(23): 15457-15463. doi: 10.1364/OE.15.015457

    [4]

    Yamazaki K, Namatsu H. 5-nm-order electron-beam lithography for nanodevice fabrication[J]. Japanese Journal of Applied Physics, 2004, 43(6S): 3767.

    [5]

    Melngailis J. Focused ion beam lithography[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993, 80-81: 1271-1280. doi: 10.1016/0168-583X(93)90781-Z

    [6]

    Shao J Y, Ding Y C, Zhai H P, et al. Fabrication of large curvature microlens array using confined laser swelling method[J]. Optics letters, 2013, 38(16): 3044-3046. doi: 10.1364/OL.38.003044

    [7]

    Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nanotoday, 2010, 5(5): 435-448. doi: 10.1016/j.nantod.2010.08.007

    [8]

    Le D, Lee J M, Kim S J, et al. Burr analysis in microgrooving[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50(5-8): 569-577. doi: 10.1007/s00170-010-2516-7

    [9]

    Deng Y J, Yi P Y, Peng L F, et al. Experimental investigation on the large-area fabrication of micro-pyramid arrays by roll-to-roll hot embossing on PVC film[J]. Journal of Micromechanics and Microengineering, 2014, 24(4): 045023. doi: 10.1088/0960-1317/24/4/045023

    [10]

    Yan J W, Oowada T, Zhou T F, et al. Precision machining of microstructures on electroless-plated NiP surface for molding glass components[J]. Journal of Materials Processing Technology, 2009, 209(10): 4802-4808. doi: 10.1016/j.jmatprotec.2008.12.008

    [11]

    Zhu Z W, To S, Zhang S J. Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 15-25. doi: 10.1016/j.ijmachtools.2015.04.002

    [12]

    Chao. Study on fabricating of micro-pyramid array by precision diamond turning[J]. Procceding of SPIE, 2013, 8769: 87691C. http://www.onacademic.com/detail/journal_1000038703062510_352a.html

    [13]

    Wu D X, Li G, Wang B, et al. Fabrication of microstructured surfaces by five-axis ultra precision machine tool[J]. Key Engineering Materials, 2014, 625: 187-191. doi: 10.4028/www.scientific.net/KEM.625.187

  • 加载中

(7)

(1)

计量
  • 文章访问数:  5859
  • PDF下载数:  1657
  • 施引文献:  0
出版历程
收稿日期:  2019-04-17
修回日期:  2019-09-02
刊出日期:  2020-08-01

目录

/

返回文章
返回