Zhou B Z, Liu M J, Wen Y W, Li Y, Chen R. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv 3, 190043 (2020). doi: 10.29026/oea.2020.190043
Citation: Zhou B Z, Liu M J, Wen Y W, Li Y, Chen R. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv 3, 190043 (2020). doi: 10.29026/oea.2020.190043

Review Open Access

Atomic layer deposition for quantum dots based devices

More Information
  • Quantum dots (QDs) are promising candidates for the next-generation optical and electronic devices due to the outstanding photoluminance efficiency, tunable bandgap and facile solution synthesis. Nevertheless, the limited optoelectronic performance and poor lifetime of QDs devices hinder their further applications. As a gas-phase surface treatment method, atomic layer deposition (ALD) has shown the potential in QDs surface modification and device construction owing to the atomic-level control and excellent uniformity/conformality. In this perspective, the attempts to utilize ALD techniques in QDs modification to improve the photoluminance efficiency, stability, carrier mobility, as well as interfacial carrier utilization are introduced. ALD proves to be successful in the photoluminance quantum yield (PLQY) enhancement due to the elimination of QDs surface dangling bonds and defects. The QDs stability and devices lifetime are improved greatly through the introduction of ALD barrier layers. Furthermore, the carrier transport is ameliorated efficiently by infilling interstitial spaces during ALD process. Attributed to the ultra-thin and dense coating on the interface, the improvement on optoelectronic performance is achieved. Finally, the challenges of ALD applications in QDs at present and several prospects including ALD process optimization, in-situ characterization and computational simulations are proposed.
  • 加载中
  • [1] Kagan C R, Lifshitz E, Sargent E H, Talapin D V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016). doi: 10.1126/science.aac5523

    CrossRef Google Scholar

    [2] Yang J, Choi M K, Kim D H, Hyeon T. Designed assembly and integration of colloidal nanocrystals for device applications. Adv Mater 28, 1176-1207 (2016). doi: 10.1002/adma.201502851

    CrossRef Google Scholar

    [3] Voznyy O, Sutherland B R, Ip A H, Zhitomirsky D, Sargent E H. Engineering charge transport by heterostructuring solution-processed semiconductors. Nat Rev Mater 2, 17026 (2017). doi: 10.1038/natrevmats.2017.26

    CrossRef Google Scholar

    [4] Lhuillier E, Scarafagio M, Hease P, Nadal B, Aubin H et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett 16, 1282-1286 (2016). doi: 10.1021/acs.nanolett.5b04616

    CrossRef Google Scholar

    [5] Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies. Nat Photonics 10, 81-92 (2016). doi: 10.1038/nphoton.2015.280

    CrossRef Google Scholar

    [6] Zheng Z, Gan L, Zhang J B, Zhuge F W, Zhai T Y. An enhanced UV-Vis-NIR an d flexible photodetector based on electrospun ZnO nanowire array/PbS quantum dots film heterostructure. Adv Sci 4, 1600316 (2017). doi: 10.1002/advs.201600316

    CrossRef Google Scholar

    [7] Yuan M J, Liu M X, Sargent E H. Colloidal quantum dot solids for solution-processed solar cells. Nat Energy 1, 16016 (2016). doi: 10.1038/nenergy.2016.16

    CrossRef Google Scholar

    [8] Liu M X, Voznyy O, Sabatini R, De Arquer F P G, Munir R et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat Mater 16, 258-263 (2017). doi: 10.1038/nmat4800

    CrossRef Google Scholar

    [9] Zhang Z L, Chen Z H, Zhang J B, Chen W J, Yang J F et al. Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer. Adv Energy Mater 7, 1601773 (2017). doi: 10.1002/aenm.201601773

    CrossRef Google Scholar

    [10] Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96-99 (2014). doi: 10.1038/nature13829

    CrossRef Google Scholar

    [11] Pan J, Quan L N, Zhao Y B, Peng W, Murali B et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater 28, 8718-8725 (2016). doi: 10.1002/adma.201600784

    CrossRef Google Scholar

    [12] Li J H, Xu L M, Wang T, Song J Z, Chen J W et al. 50-Fold EQE Improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater 29, 1603885 (2017). doi: 10.1002/adma.201603885

    CrossRef Google Scholar

    [13] Oh S J, Berry N E, Choi J H, Gaulding E A, Lin H et al. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett 14, 1559-1566 (2014). doi: 10.1021/nl404818z

    CrossRef Google Scholar

    [14] Kramer I J, Sargent E H. Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506-8514 (2011). doi: 10.1021/nn203438u

    CrossRef Google Scholar

    [15] Efros A L, Nesbitt D J. Origin and control of blinking in quantum dots. Nat Nanotechnol 11, 661-671 (2016). doi: 10.1038/nnano.2016.140

    CrossRef Google Scholar

    [16] Kagan C R, Murray C B. Charge transport in strongly coupled quantum dot solids. Nat Nanotechnol 10, 1013-1026 (2015). doi: 10.1038/nnano.2015.247

    CrossRef Google Scholar

    [17] Moon H, Lee C, Lee W, Kim J, Chae H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater 31, 1804294 (2019). doi: 10.1002/adma.201804294

    CrossRef Google Scholar

    [18] Zhao K, Pan Z X, Zhong X H. Charge recombination control for high efficiency quantum dot sensitized solar cells. J Phys Chem Lett 7, 406-417 (2016). doi: 10.1021/acs.jpclett.5b02153

    CrossRef Google Scholar

    [19] Boles M A, Ling D S, Hyeon T, Talapin D V. Erratum: the surface science of nanocrystals. Nat Mater 15, 364 (2016).

    Google Scholar

    [20] Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett 2, 2071-2083 (2017). doi: 10.1021/acsenergylett.7b00547

    CrossRef Google Scholar

    [21] Chen O, Zhao J, Chauhan V P, Cui J, Wong C et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater 12, 445-451 (2013). doi: 10.1038/nmat3539

    CrossRef Google Scholar

    [22] Reiss P, Protiere M, Li L. Core/Shell semiconductor nanocrystals. Small 5, 154-168 (2009). doi: 10.1002/smll.200800841

    CrossRef Google Scholar

    [23] Supran G J, Song K W, Hwang G W, Correa R E, Scherer J et al. High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv Mater 27, 1437-1442 (2015). doi: 10.1002/adma.201404636

    CrossRef Google Scholar

    [24] Pu C D, Peng X G. To battle surface traps on CdSe/CdS Core/Shell nanocrystals: shell isolation versus surface treatment. J Am Chem Soc 138, 8134-8142 (2016). doi: 10.1021/jacs.6b02909

    CrossRef Google Scholar

    [25] Wang R L, Shang Y Q, Kanjanaboos P, Zhou W J, Ning Z J et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ Sci 9, 1130-1143 (2016). doi: 10.1039/C5EE03887A

    CrossRef Google Scholar

    [26] Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10, 765-771 (2011). doi: 10.1038/nmat3118

    CrossRef Google Scholar

    [27] Shen H B, Cao W R, Shewmon N T, Yang C C, Li L S et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Lett 15, 1211-1216 (2015). doi: 10.1021/nl504328f

    CrossRef Google Scholar

    [28] Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D et al. Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7, 577-582 (2012). doi: 10.1038/nnano.2012.127

    CrossRef Google Scholar

    [29] Kramer I J, Sargent E H. The architecture of colloidal quantum dot solar cells: materials to devices. Chem Rev 114, 863-882 (2014). doi: 10.1021/cr400299t

    CrossRef Google Scholar

    [30] Kim J Y, Voznyy O, Zhitomirsky D, Sargent E H. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv Mater 25, 4986-5010 (2013). doi: 10.1002/adma.201301947

    CrossRef Google Scholar

    [31] Dai X L, Deng Y Z, Peng X G, Jin Y Z. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater 29, 1607022 (2017). doi: 10.1002/adma.201607022

    CrossRef Google Scholar

    [32] Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev 116, 10513-10622 (2016). doi: 10.1021/acs.chemrev.6b00169

    CrossRef Google Scholar

    [33] Zhang D D, Huang T Y, Duan L. Emerging self-emissive technologies for flexible displays. Adv Mater 31, 1902391 (2019).

    Google Scholar

    [34] Asundi A S, Raiford J A, Bent S F. Opportunities for atomic layer deposition in emerging energy technologies. ACS Energy Lett 4, 908-925 (2019). doi: 10.1021/acsenergylett.9b00249

    CrossRef Google Scholar

    [35] Palmstrom A F, Santra P K, Bent S F. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale 7, 12266-12283 (2015). doi: 10.1039/C5NR02080H

    CrossRef Google Scholar

    [36] Johnson R W, Hultqvist A, Bent S F. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17, 236-246 (2014). doi: 10.1016/j.mattod.2014.04.026

    CrossRef Google Scholar

    [37] Mackus A J M, Merkx M J M, Kessels W M M. From the bottom-up: toward area-selective atomic layer deposition with high selectivity. Chem Mater 31, 2-12 (2019). doi: 10.1021/acs.chemmater.8b03454

    CrossRef Google Scholar

    [38] Kumah D P, Ngai J H, Kornblum L. Epitaxial oxides on semiconductors: from fundamentals to new devices. Adv Funct Mater 30. 1901597 (2020). doi: 10.1002/adfm.201901597

    CrossRef Google Scholar

    [39] Sheng J Z, Han K L, Hong T, Choi W H, Park J S. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes. J Semicond 39, 011008 (2018). doi: 10.1088/1674-4926/39/1/011008

    CrossRef Google Scholar

    [40] Niu W B, Li X L, Karuturi S K, Fam D W, Fan H J et al. Applications of atomic layer deposition in solar cells. Nanotechnology 26, 064001 (2015). doi: 10.1088/0957-4484/26/6/064001

    CrossRef Google Scholar

    [41] Dasgupta N P, Meng X B, Elam J W, Martinson A B F. Atomic layer deposition of metal sulfide materials. Acc Chem Res 48, 341-348 (2015). doi: 10.1021/ar500360d

    CrossRef Google Scholar

    [42] Bakke J R, Pickrahn K L, Brennan T P, Bent S F. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale 3, 3482-3508 (2011). doi: 10.1039/c1nr10349k

    CrossRef Google Scholar

    [43] Koch V M, Barr M K S, Büttner P, Mínguez-Bacho I, Döhler D et al. A solution-based ALD route towards (CH3NH3)(PbI3) perovskite via lead sulfide films. J Mater Chem A 7, 25112-25119 (2019). doi: 10.1039/C9TA09715E

    CrossRef Google Scholar

    [44] Wei H Y, Wu J H, Qiu P, Liu S J, He Y F et al. Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells. J Mater Chem A 7, 25347-25354 (2019). doi: 10.1039/C9TA08929B

    CrossRef Google Scholar

    [45] Geremew A, Qian C, Abelson A, Rumyantsev S, Kargar F et al. Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots. Nanoscale 11, 20171-20178 (2019). doi: 10.1039/C9NR06899F

    CrossRef Google Scholar

    [46] Abelson A, Qian C, Salk T, Luan Z Y, Fu K et al. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat Mater 19, 49-55 (2020). doi: 10.1038/s41563-019-0485-2

    CrossRef Google Scholar

    [47] Weng Y L, Chen G X, Zhou X T, Yan Q, Guo T L et al. Design and fabrication of bi-functional TiO2/Al2O3 nanolaminates with selected light extraction and reliable moisture vapor barrier performance. Nanotechnology 30, 085702 (2019). doi: 10.1088/1361-6528/aaf4e1

    CrossRef Google Scholar

    [48] Seo S, Jeong S, Park H, Shin H, Park N G. Atomic layer deposition for efficient and stable perovskite solar cells. Chem Commun 55, 2403-2416 (2019). doi: 10.1039/C8CC09578G

    CrossRef Google Scholar

    [49] Kwon J H, Jeong E G, Jeon Y, Kim D G, Lee S et al. Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers. ACS Appl Mater Interfaces 11, 3251-3261 (2019). doi: 10.1021/acsami.8b11930

    CrossRef Google Scholar

    [50] Dasgupta N P, Jung H J, Trejo O, McDowell M T, Hryciw A et al. Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett 11, 934-940 (2011). doi: 10.1021/nl103001h

    CrossRef Google Scholar

    [51] Brennan T P, Ardalan P, Lee H B R, Bakke J R, Ding I K et al. Atomic layer deposition of CdS quantum dots for solid-state quantum dot sensitized solar cells. Adv Energy Mater 1, 1169-1175 (2011). doi: 10.1002/aenm.201100363

    CrossRef Google Scholar

    [52] Dasgupta N P, Lee W, Prinz F B. Atomic layer deposition of lead sulfide thin films for quantum confinement. Chem Mater 21, 3973-3978 (2009). doi: 10.1021/cm901228x

    CrossRef Google Scholar

    [53] Kim S H, Sher P H, Hahn Y B, Smith J M. Luminescence from single CdSe nanocrystals embedded in ZnO thin films using atomic layer deposition. Nanotechnology 19, 365202 (2008). doi: 10.1088/0957-4484/19/36/365202

    CrossRef Google Scholar

    [54] Pourret A, Guyot-Sionnest P, Elam J W. Atomic layer deposition of ZnO in quantum dot thin films. Adv Mater 21, 232-235 (2009). doi: 10.1002/adma.200801313

    CrossRef Google Scholar

    [55] Liu Y, Gibbs M, Perkins C L, Tolentino J, Zarghami M H et al. Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Lett 11, 5349-5355 (2011). doi: 10.1021/nl2028848

    CrossRef Google Scholar

    [56] Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J et al. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv Energy Mater 3, 917-922 (2013). doi: 10.1002/aenm.201201083

    CrossRef Google Scholar

    [57] Cate S T, Liu Y, Sandeep C S S, Kinge S, Houtepen A J et al. Activating carrier multiplication in PbSe quantum dot solids by infilling with atomic layer deposition. J Phys Chem Lett 4, 1766-1770 (2013). doi: 10.1021/jz4007492

    CrossRef Google Scholar

    [58] Thimsen E, Johnson M, Zhang X, Wagner A J, Mkhoyan K A et al. High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas. Nat Commun 5, 5822 (2014). doi: 10.1038/ncomms6822

    CrossRef Google Scholar

    [59] Devloo-Casier K, Geiregat P, Ludwig K F, Van Stiphout K, Vantomme A et al. A case study of ALD encapsulation of quantum dots: embedding supported CdSe/CdS/ZnS quantum dots in a ZnO matrix. J Phys Chem C 120, 18039-18045 (2016). doi: 10.1021/acs.jpcc.6b04398

    CrossRef Google Scholar

    [60] Yun H S, Noh K, Kim J, Noh S H, Kim G H et al. CsPbBr3 perovskite quantum dot light‐emitting diodes using atomic layer deposited Al2O3 and ZnO interlayers. Phys Status Solidi RRL 14, 1900573 (2020). doi: 10.1002/pssr.201900573

    CrossRef Google Scholar

    [61] Yoon S H, Gwak D, Kim H H, Woo H J, Cho J et al. Insertion of an inorganic barrier layer as a method of improving the performance of quantum dot light-emitting diodes. ACS Photonics 6, 743-748 (2019). doi: 10.1021/acsphotonics.8b01672

    CrossRef Google Scholar

    [62] Kuhs J, Werbrouck A, Zawacka N, Drijvers E, Smet P F et al. In situ photoluminescence of colloidal quantum dots during gas exposure—the role of water and reactive atomic layer deposition precursors. ACS Appl Mater Interfaces 11, 26277-26287 (2019). doi: 10.1021/acsami.9b08259

    CrossRef Google Scholar

    [63] Jin H, Moon H, Lee W, Hwangbo H, Yong S H et al. Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers. RSC Adv 9, 11634-11640 (2019). doi: 10.1039/C9RA00145J

    CrossRef Google Scholar

    [64] Guo T L, Bose R, Zhou X H, Gartstein Y N, Yang H Z et al. Delayed photoluminescence and modified blinking statistics in alumina-encapsulated zero-dimensional inorganic perovskite nanocrystals. J Phys Chem Lett 10, 6780-6787 (2019). doi: 10.1021/acs.jpclett.9b02594

    CrossRef Google Scholar

    [65] Xiang Q Y, Zhou B Z, Cao K, Wen Y W, Li Y et al. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition. Chem Mater 30, 8486-8494 (2018). doi: 10.1021/acs.chemmater.8b03096

    CrossRef Google Scholar

    [66] Palei M, Caligiuri V, Kudera S, Krahne R. Robust and bright photoluminescence from colloidal nanocrystal/Al2O3 composite films fabricated by atomic layer deposition. ACS Appl Mater Interfaces 10, 22356-22362 (2018). doi: 10.1021/acsami.8b03769

    CrossRef Google Scholar

    [67] Mahmoud N, Walravens W, Kuhs J, Detavernier C, Hens Z et al. Micro-transfer-printing of Al2O3-capped short-wave-infrared PbS quantum dot photoconductors. ACS Appl Nano Mater 2, 299-306 (2018).

    Google Scholar

    [68] Ji W Y, Shen H B, Zhang H, Kang Z H, Zhang H Z. Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer. Nanoscale 10, 11103-11109 (2018). doi: 10.1039/C8NR01460D

    CrossRef Google Scholar

    [69] Bose R, Dangerfield A, Rupich S M, Guo T L, Zheng Y Z et al. Engineering multilayered nanocrystal solids with enhanced optical properties using metal oxides for photonic applications. ACS Appl Nano Mater 1, 6782-6789 (2018). doi: 10.1021/acsanm.8b01577

    CrossRef Google Scholar

    [70] Loiudice A, Saris S, Oveisi E, Alexander D T L, Buonsanti R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed 56, 10696-10701 (2017). doi: 10.1002/anie.201703703

    CrossRef Google Scholar

    [71] Li Z W. Enhanced performance of quantum dots light-emitting diodes: the case of Al2O3 electron blocking layer. Vacuum 137, 38-41 (2017). doi: 10.1016/j.vacuum.2016.12.017

    CrossRef Google Scholar

    [72] Zeng M, Peng X G, Liao J J, Wang G Z, Li Y F et al. Enhanced photoelectrochemical performance of quantum dot-sensitized TiO2 nanotube arrays with Al2O3 overcoating by atomic layer deposition. Phys Chem Chem Phys 18, 17404-17413 (2016). doi: 10.1039/C6CP01299J

    CrossRef Google Scholar

    [73] Yin B, Sadtler B, Berezin M Y, Thimsen E. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition. Chem Commun 52, 11127-11130 (2016). doi: 10.1039/C6CC05090E

    CrossRef Google Scholar

    [74] Valdesueiro D, Prabhu M K, Guerra-Nunez C, Sandeep C S S, Kinge S et al. Deposition mechanism of aluminum oxide on quantum dot films at atmospheric pressure and room temperature. J Phys Chem C 120, 4266-4275 (2016). doi: 10.1021/acs.jpcc.5b11653

    CrossRef Google Scholar

    [75] Li G R, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater 28, 3528-3534 (2016). doi: 10.1002/adma.201600064

    CrossRef Google Scholar

    [76] Ephraim J, Lanigan D, Staller C, Milliron D J, Thimsen E. Transparent conductive oxide nanocrystals coated with insulators by atomic layer deposition. Chem Mater 28, 5549-5553 (2016). doi: 10.1021/acs.chemmater.6b02414

    CrossRef Google Scholar

    [77] Cheng C Y, Mao M H. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition. J Appl Phys 120, 083103 (2016). doi: 10.1063/1.4961425

    CrossRef Google Scholar

    [78] So H M, Choi H, Shim H C, Lee S M, Jeong S et al. Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors. Appl Phys Lett 106, 093507 (2015). doi: 10.1063/1.4914304

    CrossRef Google Scholar

    [79] Sayevich V, Gaponik N, Plötner M, Kruszynska M, Gemming T et al. Stable dispersion of iodide-capped pbse quantum dots for high-performance low-temperature processed electronics and optoelectronics. Chem Mater 27, 4328-4337 (2015). doi: 10.1021/acs.chemmater.5b00793

    CrossRef Google Scholar

    [80] Zhang J, Tolentino J, Smith E R, Zhang J B, Beard M C et al. Carrier transport in PbS and PbSe QD films measured by photoluminescence quenching. J Phys Chem C 118, 16228-16235 (2014). doi: 10.1021/jp504240u

    CrossRef Google Scholar

    [81] Hu C, Gassenq A, Justo Y, Devloo-Casier K, Chen H T et al. Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al2O3 atomic layer deposition. Appl Phys Lett 105, 171110 (2014). doi: 10.1063/1.4900930

    CrossRef Google Scholar

    [82] Roelofs K E, Brennan T P, Dominguez J C, Bailie C D, Margulis G Y et al. Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells. J Phys Chem C 117, 5584-5592 (2013). doi: 10.1021/jp311846r

    CrossRef Google Scholar

    [83] Liu Y, Tolentino J, Gibbs M, Ihly R, Perkins C L et al. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V-1 s-1. Nano Lett 13, 1578-1587 (2013). doi: 10.1021/nl304753n

    CrossRef Google Scholar

    [84] Ip A H, Labelle A J, Sargent E H. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier. Appl Phys Lett 103, 263905 (2013). doi: 10.1063/1.4858135

    CrossRef Google Scholar

    [85] Brennan T P, Trejo O, Roelofs K E, Xu J, Prinz F B et al. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. J Mater Chem A 1, 7566-7575 (2013). doi: 10.1039/c3ta10903h

    CrossRef Google Scholar

    [86] Kim D K, Lai Y M, Diroll B T, Murray C B, Kagan C R. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nat Commun 3, 1216 (2012). doi: 10.1038/ncomms2218

    CrossRef Google Scholar

    [87] Likovich E M, Jaramillo R, Russell K J, Ramanathan S, Narayanamurti V. High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes. Adv Mater 23, 4521-4525 (2011). doi: 10.1002/adma.201101782

    CrossRef Google Scholar

    [88] Lambert K, Dendooven J, Detavernier C, Hens Z. Embedding quantum dot monolayers in Al2O3 using atomic layer deposition. Chem Mater 23, 126-128 (2011). doi: 10.1021/cm1027354

    CrossRef Google Scholar

    [89] Ihly R, Tolentino J, Liu Y, Gibbs M, Law M. The photothermal stability of PbS quantum dot solids. ACS Nano 5, 8175-8186 (2011). doi: 10.1021/nn2033117

    CrossRef Google Scholar

    [90] Choi J H, Oh S J, Lai Y M, Kim D K, Zhao T S et al. In situ repair of high-performance, flexible nanocrystal electronics for large-area fabrication and operation in air. ACS Nano 7, 8275-8283 (2013). doi: 10.1021/nn403752d

    CrossRef Google Scholar

    [91] Di Stasio F, Ramiro I, Bi Y, Christodoulou S, Stavrinadis A et al. High-efficiency light-emitting diodes based on formamidinium lead bromide nanocrystals and solution processed transport layers. Chem Mater 30, 6231-6235 (2018). doi: 10.1021/acs.chemmater.8b03079

    CrossRef Google Scholar

    [92] Yu K H, Lin X, Lu G H, Wen Z H, Yuan C et al. Optimized CdS quantum dot-sensitized solar cell performance through atomic layer deposition of ultrathin TiO2 coating. RSC Adv 2, 7843-7848 (2012). doi: 10.1039/c2ra20979a

    CrossRef Google Scholar

    [93] Lin X, Yu K H, Lu G H, Chen J H, Yuan C. Atomic layer deposition of TiO2 interfacial layer for enhancing performance of quantum dot and dye co-sensitized solar cells. J Phys D Appl Phys 46, 024004 (2013). doi: 10.1088/0022-3727/46/2/024004

    CrossRef Google Scholar

    [94] Xie Z, Liu X X, Wang W P, Wang X J, Liu C et al. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition. Nano Energy 11, 400-408 (2015). doi: 10.1016/j.nanoen.2014.11.024

    CrossRef Google Scholar

    [95] Wei H Y, Qiu P, Peng M Z, Wu Q X, Liu S J et al. Interface modification for high-efficient quantum dot sensitized solar cells using ultrathin aluminum nitride coating. Appl Surf Sci 476, 608-614 (2019). doi: 10.1016/j.apsusc.2019.01.144

    CrossRef Google Scholar

    [96] Zhang X Y, Lu M, Zhang Y, Wu H, Shen X Y et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p-i-n structures. ACS Cent Sci 4, 1352-1359 (2018). doi: 10.1021/acscentsci.8b00386

    CrossRef Google Scholar

    [97] Liu X, Zhang X S, Li L, Xu J P, Yu S L et al. Stable luminescence of CsPbBr3/nCdS Core/Shell Perovskite quantum dots with Al self-passivation layer modification. ACS Appl Mater Interfaces 11, 40923-40931 (2019). doi: 10.1021/acsami.9b14967

    CrossRef Google Scholar

    [98] Zu Y Q, Dai J F, Li L, Yuan F, Chen X et al. Ultra-stable CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield via postsynthetic surface engineering. J Mater Chem A 7, 26116-26122 (2019). doi: 10.1039/C9TA08421E

    CrossRef Google Scholar

    [99] Li X M, Wu Y, Zhang S L, Cai B, Gu Y et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater 26, 2435-2445 (2016). doi: 10.1002/adfm.201600109

    CrossRef Google Scholar

    [100] Shan Q S, Song J Z, Zou Y S, Li J H, Xu L M et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small 13, 1701770 (2017). doi: 10.1002/smll.201701770

    CrossRef Google Scholar

    [101] Van Le Q, Hong K, Jang H W, Kim S Y. Halide perovskite quantum dots for light‐emitting diodes: properties, synthesis, applications, and outlooks. Adv Electron Mater 4, 1800335 (2018). doi: 10.1002/aelm.201800335

    CrossRef Google Scholar

    [102] Yang D D, Li X M, Zeng H B. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Adv Mater Interfaces 5, 1701662 (2018). doi: 10.1002/admi.201701662

    CrossRef Google Scholar

    [103] Loiudice A, Strach M, Saris S, Chernyshov D, Buonsanti R. Universal oxide shell growth enables in situ structural studies of perovskite nanocrystals during the anion exchange reaction. J Am Chem Soc 141, 8254-8263 (2019).

    Google Scholar

    [104] Zhou B, Wang Z, Geng S, Li Y, Wang K, et al. Interface Engineering of CsPbBr3 Nanocrystal Light-Emitting Diodes via Atomic Layer Deposition. Phys Status Solidi RRL 14, 2000083 (2020). doi: 10.1002/pssr.202000083

    CrossRef Google Scholar

    [105] Lv W Z, Li L, Xu M C, Hong J X, Tang X X et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv Mater 31, 1900682 (2019). doi: 10.1002/adma.201900682

    CrossRef Google Scholar

    [106] Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed 55, 7924-7929 (2016). doi: 10.1002/anie.201603698

    CrossRef Google Scholar

    [107] Liu Z Q, Zhang Y Q, Fan Y, Chen Z Q, Tang Z B et al. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Appl Mater Interfaces 10, 13053-13061 (2018). doi: 10.1021/acsami.7b18964

    CrossRef Google Scholar

    [108] Hines D A, Kamat P V. Recent advances in quantum dot surface chemistry. ACS Appl Mater Interfaces 6, 3041-3057 (2014). doi: 10.1021/am405196u

    CrossRef Google Scholar

    [109] De Arquer F P G, Armin A, Meredith P, Sargent E H. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2, 16100 (2017). doi: 10.1038/natrevmats.2016.100

    CrossRef Google Scholar

    [110] Litvin A P, Martynenko I V, Purcell-Milton F, Baranov A V, Fedorov A V et al. Colloidal quantum dots for optoelectronics. J Mater Chem A 5, 13252-13275 (2017). doi: 10.1039/C7TA02076G

    CrossRef Google Scholar

    [111] Guyot-Sionnest P. Electrical transport in colloidal quantum dot films. J Phys Chem Lett 3, 1169-1175 (2012). doi: 10.1021/jz300048y

    CrossRef Google Scholar

    [112] Liang X Y, Bai S, Wang X, Dai X L, Gao F et al. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chem Soc Rev 46, 1730-1759 (2017). doi: 10.1039/C6CS00122J

    CrossRef Google Scholar

    [113] Beard M C, Luther J M, Nozik A J. The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9, 951-954 (2014). doi: 10.1038/nnano.2014.292

    CrossRef Google Scholar

    [114] Wei H Y, Li D M, Zheng X H, Meng Q B. Recent progress of colloidal quantum dot based solar cells. Chin Phys B 27, 018808 (2018). doi: 10.1088/1674-1056/27/1/018808

    CrossRef Google Scholar

    [115] Du Z L, Artemyev M, Wang J, Tang J G. Performance improvement strategies for quantum dot-sensitized solar cells: a review. J Mater Chem A 7, 2464-2489 (2019). doi: 10.1039/C8TA11483H

    CrossRef Google Scholar

    [116] Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2, 17009 (2017). doi: 10.1038/nenergy.2017.9

    CrossRef Google Scholar

    [117] Li W Z, Li J L, Wang L D, Niu G D, Gao R D et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J Mater Chem A 1, 11735-11740 (2013). doi: 10.1039/c3ta12240a

    CrossRef Google Scholar

    [118] Koushik D, Verhees W J H, Kuang Y H, Veenstra S, Zhang D et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ Sci 10, 91-100 (2017). doi: 10.1039/C6EE02687G

    CrossRef Google Scholar

    [119] Lv Y F, Xu P H, Ren G Q, Chen F, Nan H R et al. Low-temperature atomic layer deposition of metal oxide layers for perovskite solar cells with high efficiency and stability under harsh environmental conditions. ACS Appl Mater Interfaces 10, 23928-23937 (2018). doi: 10.1021/acsami.8b07346

    CrossRef Google Scholar

    [120] Seo S, Jeong S, Bae C, Park N G, Shin H. Perovskite solar cells with inorganic electron- and hole-transport layers exhibiting long-term (≈500 h) Stability at 85 ℃ under continuous 1 sun illumination in ambient air. Adv Mater 30, 1801010 (2018). doi: 10.1002/adma.201801010

    CrossRef Google Scholar

    [121] Kim Y H, Heo J S, Kim T H, Park S, Yoon M H et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489, 128-132 (2012). doi: 10.1038/nature11434

    CrossRef Google Scholar

    [122] Zhao B D, Lee L C, Yang L, Pearson A J, Lu H Z et al. In situ atmospheric deposition of ultrasmooth nickel oxide for efficient perovskite solar cells. ACS Appl Mater Interfaces 10, 41849-41854 (2018). doi: 10.1021/acsami.8b15503

    CrossRef Google Scholar

    [123] Li G J, Jiang Y B, Deng S B, Tam A, Xu P et al. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv Sci 4, 1700463 (2017). doi: 10.1002/advs.201700463

    CrossRef Google Scholar

    [124] Palmstrom A F, Raiford J A, Prasanna R, Bush K A, Sponseller M et al. Interfacial effects of tin oxide atomic layer deposition in metal halide perovskite photovoltaics. Adv Energy Mater 8, 1800591 (2018). doi: 10.1002/aenm.201800591

    CrossRef Google Scholar

    [125] Zhang H, Sui N, Chi X C, Wang Y H, Liu Q H et al. Ultrastable quantum-dot light-emitting diodes by suppression of leakage current and exciton quenching processes. ACS Appl Mater Interfaces 8, 31385-31391 (2016). doi: 10.1021/acsami.6b09246

    CrossRef Google Scholar

    [126] Yang Z Y, Albrow-Owen T, Cui H X, Alexander-Webber J, Gu F X et al. Single-nanowire spectrometers. Science 365, 1017-1020 (2019). doi: 10.1126/science.aax8814

    CrossRef Google Scholar

    [127] Wang J W, Sciarrino F, Laing A, Thompson M G. Integrated photonic quantum technologies. Nat Photonics 14, 273-284 (2020). doi: 10.1038/s41566-019-0532-1

    CrossRef Google Scholar

    [128] Geiregat P, Van Thourhout D, Hens Z. A bright future for colloidal quantum dot lasers. NPG Asia Mater 11, 41 (2019). doi: 10.1038/s41427-019-0141-y

    CrossRef Google Scholar

  • Section 4 Experiments to demonstrate the virtual image
    Section 6 Real-time imaging results
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(10463) PDF downloads(2793) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint