大口径光学非球面镜先进制造技术概述

刘锋伟,吴永前,陈强,等. 大口径光学非球面镜先进制造技术概述[J]. 光电工程,2020,47(10):200203. doi: 10.12086/oee.2020.200203
引用本文: 刘锋伟,吴永前,陈强,等. 大口径光学非球面镜先进制造技术概述[J]. 光电工程,2020,47(10):200203. doi: 10.12086/oee.2020.200203
Liu F W, Wu Y Q, Chen Q, et al. Overview of advanced manufacturing technology of large-aperture aspheric mirror[J]. Opto-Electron Eng, 2020, 47(10): 200203. doi: 10.12086/oee.2020.200203
Citation: Liu F W, Wu Y Q, Chen Q, et al. Overview of advanced manufacturing technology of large-aperture aspheric mirror[J]. Opto-Electron Eng, 2020, 47(10): 200203. doi: 10.12086/oee.2020.200203

大口径光学非球面镜先进制造技术概述

  • 基金项目:
    国家自然科学基金资助项目(61905255)
详细信息
    作者简介:
    通讯作者: 吴永前(1977-),男,博士,副研究员,主要从事先进光学制造技术的研究。E-mail:wyq95111@sina.com 伍凡(1957-),男,博士,研究员,主要从事先进光学制造技术的研究。E-mail:wufan@ioe.ac.cn
  • 中图分类号: O435;TH74

Overview of advanced manufacturing technology of large-aperture aspheric mirror

  • Fund Project: Supported by National Natural Science Foundation of China (61905255)
More Information
  • 在光学系统中使用非球面可以有效校正像差,改善像质,进而简化系统结构;并且增大系统口径可以从根本上提高系统的分辨本领,因此在基础科学研究、天文学宇宙探测以及国防安全等领域都对大口径非球面镜有着迫切需求。大口径非球面的制造在现代光学制造工程中扮演着重要的角色。本文以大口径非球面镜的先进制造为主题,对大口径非球面镜的光学加工技术,特别是研磨抛光技术及其过程中所采用的面形检测方法进行了综述,特别总结了新一代先进光学制造的技术特征,展望了未来大口径非球面镜的制造策略。

  • Overview: In optical imaging system, the aspheric surfaces possess outstanding aberration correction capability comparing to traditional spherical surfaces. Using asphere in optic design can simplify the optical system dramatically, which is especially beneficial to many space-based optical systems. Therefore, aspheric optics are playing an increasingly important role in modern optical system. It is known to us the system aperture determines the system's resolution based on Rayleigh criterion, therefore, the system aperture is getting larger and larger to obtain a keener resolution. In this paper we first introduced the rushing needs of large-aperture aspheric mirrors in modern optical engineering, e.g. high-resolution earth observation camera, high-power laser weapon, large ground- or space-based telescope, inertial confinement fusion (ICF), and also modern EUV lithography machine. There's no doubt that the manufacturing of large-aperture aspheric mirror is of great interest in modern optical engineering. Over the past century, lots of manufacturing techniques are developed, and we summarized the optical manufacturing and optical testing techniques of large-aperture aspheric mirror based on our practical optical manufacturing experience in our institute. In optical manufacturing, the grinding and polishing process are of critical importance, therefore we mainly focus on the representative polishing and testing techniques. For optical polishing, we classified the techniques into three generations, the first generation is traditional mechanical polishing which is an indeterministic processing tool; the second generation is computer controlled optical surfacing (CCOS) which is deterministic and already widely used for large-aperture mirror manufacturing in our country; the third generation is called controllable adaptive polishing, e.g. stressed/active lap polishing, bonnet polishing, magnetorheological finishing (MRF) polishing, ion beam figuring (IBF), et al. The controllable adaptive polishing techniques are advanced and are necessary for high accuracy large-aperture aspheric mirrors. Optical testing techniques are also reviewed. They are classified by different principles, e.g. coordinate measurement techniques, geometric light methods and physical optics methods (interferometry). Different methods can serve for different procedures during the grinding and polishing process. Generally speaking, large dynamic range, high accuracy, and also more adaptive testing techniques is the trend of optical testing. But one should bear in mind that the manufacture of large-aperture aspheric mirror is a complex and long process, no testing methods can cover the whole process, typically more than three testing methods are needed to ensure the optical manufacturing. In the third part we summarized the technical characteristics of advanced (new generation) optical manufacturing, and looked forward to the future manufacturing strategy of large-diameter aspheric mirrors.

  • 加载中
  • 图 1  詹姆斯韦伯空间望远镜[3]

    Figure 1.  James Webb space telescope[3]

    图 2  高空对地相机[6]

    Figure 2.  High-resolution earth observation camera[6]

    图 3  美国TMT望远镜[8]

    Figure 3.  Side view of the Thirty Meter Telescope[8]

    图 4  激光惯性约束聚变装置及相关大口径光学元件[11]

    Figure 4.  Inertial confinement fusion (ICF) and the large-aperture optic[11]

    图 5  (a) ASML EUV光刻机;(b)投影物镜系统[15]

    Figure 5.  (a) ASML EUV Lithography machine; (b) Projection objective lens system[15]

    图 6  传统机械式研抛机床与花瓣抛光盘[18]

    Figure 6.  Traditional mechanical polishing machine and petal polishing lab[18]

    图 7  中科院光电所自制的1.8 m CCOS加工系统[22]

    Figure 7.  Ф1800 mm CCOS system made by Institute of Optics and Electronics, Chinese Academy of Science (IOE, CAS)[22]

    图 8  应力加工技术应用于TMT子镜加工[22]

    Figure 8.  Manufacture of sub-mirror of TMT using stressed mirror technique[22]

    图 9  (a) 中科院光电所自行研制的1.0 m应力盘结构示意图[22];(b) Φ1.0 m应力盘应用于4 m口径非球面加工[29]

    Figure 9.  (a) Structure of Φ1.0 m stressed polishing lab manufactured by IOE, CAS[22]; (b) Polishing of Φ4.0 m asphere using Φ1.0 m stressed lab polishing[29]

    图 10  (a) 气囊抛光原理示意图;(b) Zeeko IRP400气囊抛光机[32]

    Figure 10.  (a) Schematic of bonnet polishing technology; (b) IRP400 bonnet polishing machine by Zeeko[32]

    图 11  MRF技术加工原理示意图[34]

    Figure 11.  Schematic of MRF technology[34]

    图 12  国防科大研发的磁流变抛光设备(a)及工作图(b)

    Figure 12.  (a) The MRF equipment manufactured by National University of Defense Technology; (b) The working diagram

    图 13  射流抛光原理图[36]

    Figure 13.  The schematic of fluid jet polishing (FJP)[36]

    图 14  (a) 普通液体;(b)磁射流液;(c)磁场下的磁射流液;(d)射流加工装置[22]

    Figure 14.  (a) Normal fluid; (b) Magnetorheological fluid; (c) Magnetorheological fluid in magnetic field; (d) The FJP device[22]

    图 15  Kodak 2.5 m离子束抛光机[22]

    Figure 15.  2.5 m Ion beam figuring (IBF) machine by Kodak[22]

    图 16  国防科技大学研发的离子束抛光机

    Figure 16.  IBF machine manufactured by National University of Defense and Technology

    图 17  (a) 摆臂式轮廓仪测量原理示意图;(b) Arizona大学研制的摆臂式轮廓仪[43]

    Figure 17.  (a) Schematic of swimming-arm profilometry; (b) Swimming-arm profilometer by Arizona university[43]

    图 18  激光跟踪仪测量原理图[46]

    Figure 18.  Schematic of laser track metrology[46]

    图 19  中科院光电所1.3 m主镜精磨阶段激光跟踪仪面形检测

    Figure 19.  The surface testing of Φ1.3 m primary mirror using laser track in IOE, CAS

    图 20  (a) 激光跟踪仪检测结果;(b)三坐标测量结果;(c)二者面形之差

    Figure 20.  (a) The surface measured by laser track; (b) The surface measured by CMM; (c) The difference between laser track and CMM

    图 21  Taylor-Hobson公司研制的LUPHOScan260 HD[41]

    Figure 21.  The LUPHOScan260 HD by Taylor-Hobson[41]

    图 22  (a) 刀口法检测原理示意图;(b)刀口仪[49]

    Figure 22.  (a) The schematic of knife-edge method; (b) Knife-edge instrument[49]

    图 23  (a) 哈特曼检测原理示意图;(b)径向哈特曼光阑[49]

    Figure 23.  (a) The schematic of Hartmann method; (b) Hartmann radial diaphragm[49]

    图 24  (a) 夏克-哈特曼检测精磨离轴抛物面;(b)检测结果与干涉仪对比[57]

    Figure 24.  (a) The surface testing of off-axis paraboloid using a Shack-Hartmann sensor; (b) Results comparation between Shack-Hartmann sensor and interferometer[57]

    图 25  (a) SCOTS条纹反射术原理示意图[59];(b)中科院光电所结构光测试系统现场

    Figure 25.  (a) The schematic of SCOTS[59]; (b) The testing of a Φ1.3 m primary mirror using structured light system in IOE, CAS

    图 26  (a) 结构光测试结果;(b) Zygo干涉仪测试结果

    Figure 26.  (a) Surface error measured by structured light system; (b) Surface error map measured by Zygo interferometer

    图 27  (a) ESDI H2000动态干涉仪[60];(b) 4D动态PhaseCam 6000动态干涉仪[61]

    Figure 27.  (a) H2000 dynamic interferometer by ESDI[60]; (b) PhaseCam6000 dynamic interferometer by 4D[61]

    图 28  (a) QED子孔径拼接干涉仪;(b)子孔径划分示意图[43]

    Figure 28.  (a) Stitching interferometer by QED; (b) The schematic of sub-aperture[43]

    图 29  (a) 倾斜波干涉仪光路示意图;(b)典型干涉图[65]

    Figure 29.  (a) The schematic of tilted wavefront interferometer; (b) Inteferogram[65]

    图 30  Mahr推出的倾斜波干涉仪MarOpto TWI 60[67]

    Figure 30.  The MarOpto TWI 60 by Mahr[67]

    图 31  (a) 中科院光电所研制的红外干涉仪检测现场图;(b)红外检测最终结果

    Figure 31.  (a) Asphere testing using the infrared interferometer manufactured by IOE, CAS; (b) The final testing results of infrared interferometer

    图 32  亚奈奎斯特技术测量非球面[68]。(a)非球面非零位干涉图;(b)计算生成参考相位;(c)组合莫尔条纹;(d)回程误差补偿后包裹相位

    Figure 32.  The sub-Nyquist technique for asphere testing[68]. (a) The non-null inteferogram; (b) The computing generated reference (CGR); (c) The combined Moiré fringe; (d) The wrapped phase of Moiré fringe

    图 33  (a) 横向剪切干涉结构示意图[57];(b)与径向剪切干涉结构示意图[57]

    Figure 33.  (a) The schematic of transverse shear[57]; (b) The schematic of radial shear[57]

    图 34  二次非球面及其几何焦点[73]。(a)椭球面;(b)抛物面;(c)双曲面

    Figure 34.  The quadratic aspheric surface and the geometric focus point[73]. (a) Ellipsoid surface; (b) Parabolic surface; (c) Hyperboloid surface

    图 35  Offner补偿器零位检测非球面示意图[76]

    Figure 35.  The schematic of null test of aspheric surface using Offner corrector[76]

    图 36  利用Offner补偿器检测1.3 m口径非球面主镜现场图(a)及检测结果(b)

    Figure 36.  (a) The diagram of null test of Φ1.3 m aspheric surface using Offner corrector; (b) The surface error map

    图 37  CGH零位检测非球面光路示意图及CGH实物图

    Figure 37.  (a) The schematic of null test of aspheric surface using CGH; (b) The practical CGH

    图 38  CGH零位检测非球面干涉条纹(a)及面形结果(b)

    Figure 38.  The null interferogram (a) and the surface error map (b) of an aspheric surface using CGH

  • [1]

    潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社, 2004.

    Pan J H. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004.

    [2]

    辛企明.光学塑料非球面制造技术[M].北京:国防工业出版社, 2005.

    Xin Q M. Manufacturing Technology of Plastic Aspheric Lens[M]. Beijing: National Defense Industry Press, 2005.

    [3]

    NASA. Webb Space Telescope[EB/OL] https://www.jwst.nasa.gov/content/about/index.html.

    [4]

    Stahl H P. Optics needs for future space telescopes[J]. Proceeding of SPIE, 2003, 5180: 1-5. http://spie.org/Publications/Proceedings/Paper/10.1117/12.514277

    [5]

    胡建军.非球面研制实录[D].苏州: 苏州大学2009.

    Hu J J. Development memoir of aspheric surfaces[D]. Suzhou: Soochow University, 2009.

    [6]

    MDAA. Defense Support Program[EB/OL] https://missiledefenseadvocacy.org/defense-systems/defense-support-program/

    [7]

    潘君骅.高科技时代的光学需求[J].江苏科技信息, 2005(2): 1-4. http://www.cqvip.com/Main/Detail.aspx?id=15069650

    Pan J H. Optical requirements in the high-tech age[J]. Jiangsu Science & Technology Information, 2005(2): 1-4. http://www.cqvip.com/Main/Detail.aspx?id=15069650

    [8]

    TMT International Observatory. TMT Complex[EB/OL] https://www.tmt.org/image/50.

    [9]

    李圣怡, 戴一帆.大中型光学非球面镜制造与测量新技术[M].北京:国防工业出版社, 2011: 5-34.

    Li S Y, Dai Y F. New Technology for Manufacturing and Measurement of Large and Middle-Scale Aspheric Surfaces[M]. Beijing: National Defense Industry Press, 2011: 5-34.

    [10]

    杨力.现代光学制造工程[M].北京:科学出版社, 2009: 91-99.

    Yang L. Modern Optical Manufacturing Engineering[M]. Beijing: Chinese Science Press, 2009: 91-99.

    [11]

    网易新闻.惯性约束核聚变, 或许是人类利用核能的另一种可能[EB/OL] https://zhuanlan.zhihu.com/p/56773505.

    [12]

    王淦昌, 袁之尚.惯性约束核聚变[M].合肥:安徽教育出版社, 1996.

    Wang G C, Yuan Z S. Inertial Confinement Fusion[M]. Hefei: Anhui Education Press, 1996.

    [13]

    杨力.先进光学制造技术[M].北京:科学出版社, 2001.

    Yang L. Advanced Optical Manufacturing Technology[M]. Beijing: Chinese Science Press, 2001.

    [14]

    戴一帆, 彭小强.光刻物镜光学零件制造关键技术概述[J].机械工程学报, 2013, 49(17): 10-18. http://www.cqvip.com/QK/90288X/201317/47459188.html

    Dai Y F, Peng X Q. Overview of key technologies for optical manufacturing of lithographic projection lens[J]. Journal of Mechanical Engineering, 2013, 49(17): 10-18. http://www.cqvip.com/QK/90288X/201317/47459188.html

    [15]

    ASML. https://www.asml.com/en.

    [16]

    牛科技.台积电宣布5nm进入量产, 3nm明年正式试产, 英特尔流下了委屈的泪水[EB/OL]. (2020-04-17). http://finance.sina.com.cn/stock/relnews/us/2020-04-17/doc-iirczymi6878241.shtml.

    [17]

    中国科学院长春光学精密机械与物理研究所. 4米量级高精度SiC非球面反射镜制造系统[J].中国科学院院刊, 2018, 33(S1): 52-55. http://www.bulletin.cas.cn/publish_article/2018/Z1/2018Z114.htm

    Changchun Institute of Optics, Fine Mechanics and Physics, CAS. Manufacturing system of 4 m high-precision SiC aspheric mirror[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(S1): 52-55. http://www.bulletin.cas.cn/publish_article/2018/Z1/2018Z114.htm

    [18]

    苏定强. 2.16米天文望远镜工程文集[M].北京:中国科学技术出版社, 2001.

    [19]

    Rupp V. The development of optical surfaces during the grinding process[J]. Applied Optics, 1965, 4(6): 734-748. http://www.opticsinfobase.org/abstract.cfm?uri=ao-4-6-743

    [20]

    郑立功.离轴非球面CCOS加工过程关键技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2003.

    Zheng L G. Key technology of off-axis aspheric CCOS fabrication[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, CAS, 2003.

    [21]

    Gallagher B. JWST mirror manufacturing status[R]. Talk for NASA Technology Days, 2006.

    [22]

    刘海涛.能动磨盘加工大口径非球面关键技术研究[D].成都: 中国科学院光电技术研究所, 2014.

    Liu H T. Key technique of computer controlled active lap in fabrication of large aspherics[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2014.

    [23]

    Lubliner J, Nelson J E. Stressed mirror polishing. 1: a technique for producing nonaxisymmetric mirrors[J]. Applied Optics, 1980, 19(14): 2332-2340. doi: 10.1364/AO.19.002332

    [24]

    沈祖耀.光学望远镜的飞跃——Keck望远镜[J].天文学进展, 1985, 3(4): 396-397. http://www.cnki.com.cn/Article/CJFDTotal-TWJZ198504020.htm

    Shen Z Y. A leap forward for optical telescopes[J]. Progress in Astronomy, 1985, 3(4): 396-397. http://www.cnki.com.cn/Article/CJFDTotal-TWJZ198504020.htm

    [25]

    Geyl R, Cayrel M. REOSC contribution to VLT and Gemini[J]. Proceedings of SPIE, 1999, 3739: 40-46. doi: 10.1117/12.360150

    [26]

    Martin H M, Anderson D S, Angel J R P, et al. Progress in the stressed-lap polishing of a 1.8-m f/1 mirror[J]. Proceedings of SPIE, 1990, 1236: 682-690. doi: 10.1117/12.19235

    [27]

    Smith B K, Burge J H, Martin H M. Fabrication of large secondary mirrors for astronomical telescopes[J]. Proceedings of SPIE, 1997, 3134: 51-61. http://spie.org/Publications/Proceedings/Paper/10.1117/12.295151

    [28]

    张伟.基于数控加工大口径非球面主镜的均匀去除方法研究[D].北京: 中国科学院光电技术研究所, 2016.

    Zhang W. Research on uniform removal method in fabrication of large aspherical mirror based on NC machining[D]. Beijing: Institute of Optics and Electronics, Chinese Academy of Sciences, 2016.

    [29]

    崔向群, 高必烈, 汪达兴, 等.一种大口径大非球面度天文镜面磨制新技术[J].光学学报, 2005, 25(3): 402-407. http://d.wanfangdata.com.cn/Periodical/gxxb200503024

    Cui X Q, Gao B L, Wang D X, et al. A new polishing technology for large diameter and deep aspherical mirror[J]. Acta Optica Sinica, 2005, 25(3): 402-407. http://d.wanfangdata.com.cn/Periodical/gxxb200503024

    [30]

    罗霄.采用平转动应力盘技术加工超大口径非球面的研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2011.

    Luo X. Fabrication of large aspherics using stressed lap with orbital tool motion[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011.

    [31]

    Walker D D, Beaucamp A T H, Brooks D, et al. Novel CNC polishing process for control of form and texture on aspheric surfaces[J]. Proceedings of SPIE, 2002, 4767: 99-105. doi: 10.1117/12.451322

    [32]

    宋剑锋.曲面光学零件气囊抛光工艺参数优化及其相关技术研究[D].哈尔滨: 哈尔滨工业大学, 2009.

    Song J F. Research on the optimization of the process parameters and its correlative technology in bonnet polishing the curved optical parts[D]. Harbin: Harbin Institute of Technology, 2009.

    [33]

    Yu G Y, Walker D, Li H Y. Implementing a grolishing process in Zeeko IRP machines[J]. Applied Optics, 2012, 51(27): 6637-6640. doi: 10.1364/AO.51.006637

    [34]

    Harris D C. History of magnetorheological finishing[J]. Proceedings of SPIE, 2011, 8016: 80160N. doi: 10.1117/12.882557

    [35]

    李龙响.大口径非球面磁流变加工的关键技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2016.

    Li L X. Study on the key techniques of magnetorheological finishing for large aspheric optics[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016.

    [36]

    Fähnle O W, Van Brug H, Frankena H J. Fluid jet polishing of optical surfaces[J]. Applied Optics, 1998, 37(28): 6771-6773. doi: 10.1364/AO.37.006771

    [37]

    Allen L N. Progress in ion figuring large optics[J]. Proceedings of SPIE, 1994, 2428: 237-247. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=993166

    [38]

    刘振宇.大口径非球面反射镜组合加工技术驻留时间算法研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2013.

    Liu Z Y. Dwell time algorithm of multi-mode technique for fabrication of large aspherics[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013.

    [39]

    曾雪锋.光学表面频段误差对成像质量的影响研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2014.

    Zeng X F. Impact on image performance of surface spatial frequency[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2014.

    [40]

    Malacara D. Optical Shop Testing[M]. 3rd ed. Hoboken, N J: Wiley, 2007.

    [41]

    www.taylor-hobson.com.cn/products/non-contact-3d-optical-profilers/luphos/luphoscan.

    [42]

    https://www.tno.nl/en/focus-areas/industry/roadmaps/semiconductor-equipment/photonics/nanomefos/.

    [43]

    Anderson D S, Burge J H. Swing-arm profilometry of aspherics[J]. Proceedings of SPIE, 1995, 2536: 169-179. doi: 10.1117/12.218421

    [44]

    朱日宏, 孙越, 沈华.光学自由曲面面形检测方法进展与展望[J].光学学报, 2021, 41(1): 0112001.

    Zhu R H, Sun Y, Shen H. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica, 2021, 41(1): 0112001.

    [45]

    Su P, Oh C J, Parks R E, et al. Swing arm optical CMM for aspherics[J]. Proceedings of SPIE, 2009, 7426: 74260J. http://spie.org/Publications/Proceedings/Paper/10.1117/12.828493

    [46]

    刘力.基于激光跟踪仪的大口径非球面镜在位检测技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2016.

    Liu L. Research on the application of laser tracker in measurement of large aspheric mirror[D]. Changchun: Changchun Institute of Optics and Fine Mechanics and Physics, Chinese Academy of Science, 2016.

    [47]

    Burge J H, Su P, Zhao C Y, et al. Use of a commercial laser tracker for optical alignment[J]. Proceedings of SPIE, 2007, 6676: 66760E. doi: 10.1117/12.736705

    [48]

    Foucault L M. Description des procedes employes pour reconnaitre la configuration des surfaces optiques[J]. Comptes Rendus de l'Academie des Sciences, 1858, 47: 958-959.

    [49]

    马拉卡拉(墨).光学车间检测[M].杨力, 译.北京: 机械工业出版社, 2012.

    [50]

    王小鹏, 朱日宏, 王雷, 等.数字刀口仪定量检验非球面光学元件面形[J].光学学报, 2011, 38(1): 0112008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201101023

    Wang X P, Zhu R H, Wang L, et al. Digitized foucault tester for quantitative evaluation the surface of aspheric optical elements[J]. Acta Optica Sinica, 2011, 38(1): 0112008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201101023

    [51]

    Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): 573-577. doi: 10.3928/1081-597X-20010901-13

    [52]

    饶学军, 凌宁, 王成, 等.哈特曼-夏克传感器在非球面加工中的应用[J].光学学报, 2002, 22(4): 491-494. http://d.wanfangdata.com.cn/Periodical/gxxb200204024

    Rao X J, Ling N, Wang C, et al. Application of Hartmann-shack sensor in aspheric process[J]. Acta Optica Sinica, 2002, 22(4): 491-494. http://d.wanfangdata.com.cn/Periodical/gxxb200204024

    [53]

    Yang H S, Lee Y W, Lee J H, et al. Implementation of Hartmann test for measuring 0.9-m aspheric mirror[J]. Proceedings of SPIE, 2005, 5638: 154-163. doi: 10.1117/12.575568

    [54]

    Yang H S, Lee Y W, Song J B. Null Hartmann test for the fabrication of large aspheric surfaces[J]. Optics Express, 2005, 13(6): 1839-1847. doi: 10.1364/OPEX.13.001839

    [55]

    张雨东, 姜文汉, 史国华, 等.自适应光学的眼科学应用[J].中国科学G辑:物理学力学天文学, 2007, 37(S1): 68-74. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JGXK2007S1007

    Zhang Y D, Jiang W H, Shi G H, et al. Ophthalmology applications of adaptive optics[J]. Science in China Series G-Physics, Mechanics & Astronomy, 2007, 37(S1): 68-74. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JGXK2007S1007

    [56]

    朱彬, 许冰, 胡渝. Hartmann-Shack传感器在光束质量测量中的应用[J].激光杂志, 2001, 22(2): 34-35. http://www.cqvip.com/QK/91041X/20012/5191966.html

    Zhu B, Xu B, Hu Y. The application of hartmann-Shack sensor in measurement of beam quality[J]. Laser Journal, 2001, 22(2): 34-35. http://www.cqvip.com/QK/91041X/20012/5191966.html

    [57]

    张金平.夏克-哈特曼波前传感器检测大口径非球面应用研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2012.

    Zhang J P. Research on testing aspherical surface using Shack- Hartmann wavefront sensor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012.

    [58]

    袁婷.基于条纹反射法的大口径非球面反射镜面形检测技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2016.

    Yuan T. Study on fringe-reflection optical surface shape measurement technology for large aspheric mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016.

    [59]

    Su P, Wang S S, Khreishi M, et al. SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[J]. Proceedings of SPIE, 2012, 8450: 84500W. doi: 10.1117/12.926719

    [60]

    https://www.mahr.de/

    [61]

    www.4dtechnology.com/

    [62]

    Kim C J, Wyant J C. Subaperture test of a large flat or a fast aspheric surface[J]. Journal of the Optical Society of America, 1981, 71: 1587. http://adsabs.harvard.edu/abs/1981OSAJ...71.1587K

    [63]

    Murphy P, Fleig J, Forbes G. Subaperture stitching interferometry for testing mild aspheres[J]. Proceedings of SPIE, 2006, 6293: 62930J. http://spie.org/x648.html?product_id=680473

    [64]

    师途, 杨甬英, 张磊, 等.非球面光学元件的面形检测技术[J].中国光学, 2014, 7(1): 26-46. http://www.cnki.com.cn/Article/CJFDTotal-ZGGA201401002.htm

    Shi T, Yang Y Y, Zhang L, et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 2014, 7(1): 26-46. http://www.cnki.com.cn/Article/CJFDTotal-ZGGA201401002.htm

    [65]

    Garbusi E, Pruss C, Osten W. Interferometer for precise and flexible asphere testing[J]. Optics Letters, 2008, 33(24): 2973-2975. doi: 10.1364/OL.33.002973

    [66]

    Garbusi E, Osten W. Perturbation methods in Optics: application to the interferometric measurement of surfaces[J]. Journal of the Optical Society of America A, 2009, 26(12): 2538-2549. doi: 10.1364/JOSAA.26.002538

    [67]

    https://www.mahr.de/

    [68]

    沈华.基于多重倾斜波面的光学自由曲面非零位干涉测量关键技术研究[D].南京: 南京理工大学, 2014.

    Shen H. Research on key techniques of tilted-wave-interferometer used in the measurement of freeform surfaces[D]. Nanjing: Nanjing University of Science and Technology, 2014.

    [69]

    Wu Y Q, Zhang Y D, Wu F, et al. Far-infrared Fizeau interferometer for large aspheric mirror[J]. Proceedings of SPIE, 2008, 7064: 70640S. doi: 10.1117/12.794415

    [70]

    Wu Y Q, Zhang Y Z, Wu F. Design of far-infrared interferometer at 10.6μm[C]//Proceedings of 2009 Symposium on Photonics and Optoelectronics, 2009: 1-4.

    [71]

    Huang L B, Lu X X, Zhou Y F, et al. Dual-wavelength interferometry based on the spatial carrier-frequency phase-shifting method[J]. Applied Optics, 2016, 55(9): 2363-2369. doi: 10.1364/AO.55.002363

    [72]

    Wu T, Valera J D, Moore A J. High-speed, sub-Nyquist interferometry[J]. Optics Express, 2011, 19(11): 10111-10123. doi: 10.1364/OE.19.010111

    [73]

    Szwaykowski P, Olszak A. Nulling Fizeau Interferometer for Aspheric Surface Measurements[C]//Proceedings of Optical Fabrication and Testing 2010, 2010.

    [74]

    闫锋涛.大口径凸非球面镜拼接测试技术研究[D].北京: 中国科学院大学, 2014.

    Yan F T. The measurement of large convex ashpheric mirrors with subaperture stitching method[D]. Beijing: University of Chinese Academy of Sciences, 2014.

    [75]

    Dall H E. A null test for paraboloids[J]. J Br Astron Assoc, 1947, 57: 201.

    [76]

    Offner A. A null corrector for paraboloidal mirrors[J]. Applied Optics, 1963, 2(2): 153-155. doi: 10.1364/AO.2.000153

    [77]

    Zhang Y D, Wu Y Q, Fan B. Theoretical and experimental study of a catadioptric compensator for an aspheric surface[J]. Applied Optics, 2013, 52(27): 6834-6839. doi: 10.1364/AO.52.006834

    [78]

    Wyant J C, Bennett V B. Using computer generated holograms to test aspheric wavefronts[J]. Applied Optics, 1972, 11(5): 2833-2839. http://www.ncbi.nlm.nih.gov/pubmed/20119414

    [79]

    Xue S, Chen S Y, Fan Z B, et al. Adaptive wavefront interferometry for unknown free-form surfaces[J]. Optics Express, 2018, 26(17): 21910-21928. doi: 10.1364/OE.26.021910

    [80]

    Zhang L, Li C, Huang X L, et al. Compact adaptive interferometer for unknown freeform surfaces with large departure[J]. Optics Express, 2020, 82(2): 1897-1913.

  • 加载中

(38)

计量
  • 文章访问数:  14863
  • PDF下载数:  4036
  • 施引文献:  0
出版历程
收稿日期:  2020-06-03
修回日期:  2020-09-29
刊出日期:  2020-10-15

目录

/

返回文章
返回