Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021).. doi: 10.29026/oea.2021.200031
Citation: Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021).. doi: 10.29026/oea.2021.200031

Original Article Open Access

Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses

More Information
  • Ultrathin flat metalenses have emerged as promising alternatives to conventional diffractive lenses, offering new possibilities for myriads of miniaturization and interfacial applications. Graphene-based materials can achieve both phase and amplitude modulations simultaneously at a single position due to the modification of the complex refractive index and thickness by laser conversion from graphene oxide into graphene like materials. In this work, we develop graphene oxide metalenses to precisely control phase and amplitude modulations and to achieve a holistic and systematic lens design based on a graphene-based material system. We experimentally validate our strategies via demonstrations of two graphene oxide metalenses: one with an ultra-long (~16λ) optical needle, and the other with axial multifocal spots, at the wavelength of 632.8 nm with a 200 nm thin film. Our proposed graphene oxide metalenses unfold unprecedented opportunities for accurately designing graphene-based ultrathin integratable devices for broad applications.
  • 加载中
  • [1] Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016). doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [2] Groever B, Chen WT, Capasso F. Meta-lens doublet in the visible region. Nano Lett 17, 4902–4907 (2017). doi: 10.1021/acs.nanolett.7b01888

    CrossRef Google Scholar

    [3] Farmahini-Farahani M, Cheng JR, Mosallaei H. Metasurfaces nanoantennas for light processing. J Opt Soc Am B 30, 2365–2370 (2013). doi: 10.1364/JOSAB.30.002365

    CrossRef Google Scholar

    [4] Yu NF, Aieta F, Genevet P, Kats MA, Gaburro Z et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12, 6328–6333 (2012). doi: 10.1021/nl303445u

    CrossRef Google Scholar

    [5] Zhang XQ, Tian Z, Yue WS, Gu JQ, Zhang S et al. Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities. Adv Mater 25, 4567–4572 (2013). doi: 10.1002/adma.201204850

    CrossRef Google Scholar

    [6] Genevet P, Yu NF, Aieta F, Lin J, Kats MA et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 100, 013101 (2012). doi: 10.1063/1.3673334

    CrossRef Google Scholar

    [7] Kats MA, Genevet P, Aoust G, Yu NF, Blanchard R et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc Natl Acad Sci USA 109, 12364–12368 (2012). doi: 10.1073/pnas.1210686109

    CrossRef Google Scholar

    [8] Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 110, 203903 (2013). doi: 10.1103/PhysRevLett.110.203903

    CrossRef Google Scholar

    [9] Pfeiffer C, Grbic A. Metamaterial huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 110, 197401 (2013). doi: 10.1103/PhysRevLett.110.197401

    CrossRef Google Scholar

    [10] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [11] Keskinbora K, Grévent C, Bechtel M, Weigand M, Goering E et al. Ion beam lithography for Fresnel zone plates in X-ray microscopy. Opt Express 21, 11747–11756 (2013). doi: 10.1364/OE.21.011747

    CrossRef Google Scholar

    [12] Jwad T, Deng SA, Butt H, Dimov S. Fabrication of TiO2 thin film-based fresnel zone plates by nanosecond laser direct writing. J Micro Nano-Manuf 6, 011001 (2018). doi: 10.1115/1.4038097

    CrossRef Google Scholar

    [13] Bowman D, Harte TL, Chardonnet V, De Groot C, Denny SJ et al. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation. Opt Express 25, 11692–11700 (2017). doi: 10.1364/OE.25.011692

    CrossRef Google Scholar

    [14] Lee GY, Yoon G, Lee SY, Yun H, Cho J et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237–4245 (2018). doi: 10.1039/C7NR07154J

    CrossRef Google Scholar

    [15] Liu LX, Zhang XQ, Kenney M, Su XQ, Xu NN et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 26, 5031–5036 (2014). doi: 10.1002/adma.201401484

    CrossRef Google Scholar

    [16] Wang Q, Zhang XQ, Xu YH, Gu JQ, Li YF et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 6, 32867 (2016). doi: 10.1038/srep32867

    CrossRef Google Scholar

    [17] Yoon G, Lee D, Nam KT, Rho J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano 12, 6421–6428 (2018). doi: 10.1021/acsnano.8b01344

    CrossRef Google Scholar

    [18] Pfeiffer C, Zhang C, Ray V, Guo LJ, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett 113, 023902 (2014). doi: 10.1103/PhysRevLett.113.023902

    CrossRef Google Scholar

    [19] Tseng ML, Hsiao HH, Chu CH, Chen MK, Sun G et al. Metalenses: advances and applications. Adv Opt Mater 6, 1800554 (2018). doi: 10.1002/adom.201800554

    CrossRef Google Scholar

    [20] Engelberg J, Levy U. The advantages of metalenses over diffractive lenses. Nat Commun 11, 1991 (2020). doi: 10.1038/s41467-020-15972-9

    CrossRef Google Scholar

    [21] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [22] Lin RH, Li XH. Multifocal metalens based on multilayer pancharatnam-berry phase elements architecture. Opt Lett 44, 2819–2822 (2019). doi: 10.1364/OL.44.002819

    CrossRef Google Scholar

    [23] Tseng ML, Huang YW, Hsiao MK, Huang HW, Chen HM et al. Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement. ACS Nano 6, 5190–5197 (2012). doi: 10.1021/nn300947n

    CrossRef Google Scholar

    [24] Chu CH, Tseng ML, da Shiue C, Chen SW, Chiang HP et al. Fabrication of phase-change Ge2Sb2Te5 nano-rings. Opt Express 19, 12652–12657 (2011). doi: 10.1364/OE.19.012652

    CrossRef Google Scholar

    [25] Lassaline N, Brechbühler R, Vonk SJW, Ridderbeek K, Spieser M et al. Optical fourier surfaces. Nature 582, 506–510 (2020). doi: 10.1038/s41586-020-2390-x

    CrossRef Google Scholar

    [26] Lim KTP, Liu HL, Liu YJ, Yang JKW. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat Commun 10, 25 (2019). doi: 10.1038/s41467-018-07808-4

    CrossRef Google Scholar

    [27] Yang WH, Xiao SM, Song QH, Liu YL, Wu YK et al. All-dielectric metasurface for high-performance structural color. Nat Commun 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0

    CrossRef Google Scholar

    [28] Semmlinger M, Tseng ML, Yang J, Zhang M, Zhang C et al. Vacuum ultraviolet light-generating metasurface. Nano Lett 18, 5738–5743 (2018). doi: 10.1021/acs.nanolett.8b02346

    CrossRef Google Scholar

    [29] Chen BH, Wu PC, Su VC, Lai YC, Chu CH et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett 17, 6345–6352 (2017). doi: 10.1021/acs.nanolett.7b03135

    CrossRef Google Scholar

    [30] Chen XW, Hai X, Wang JH. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal Chim Acta 922, 1–10 (2016). doi: 10.1016/j.aca.2016.03.050

    CrossRef Google Scholar

    [31] Zheng XR, Jia BH, Lin H, Qiu L, Li D et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015). doi: 10.1038/ncomms9433

    CrossRef Google Scholar

    [32] Yang YY, Lin H, Zhang BY, Zhang YN, Zheng XR et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics 6, 1033–1040 (2019). doi: 10.1021/acsphotonics.9b00060

    CrossRef Google Scholar

    [33] Yang TS, Lin H, Zheng XR, Loh KP, Jia BH. Tailoring pores in graphene-based materials: from generation to applications. J Mater Chem A 5, 16537–16558 (2017). doi: 10.1039/C7TA04692H

    CrossRef Google Scholar

    [34] Hao CL, Nie ZQ, Ye HP, Li H, Luo Y et al. Three-dimensional supercritical resolved light-induced magnetic holography. Sci Adv 3, e1701398 (2017). doi: 10.1126/sciadv.1701398

    CrossRef Google Scholar

    [35] Lin H, Sturmberg BCP, Lin KT, Yang YY, Zheng XR et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat Photonics 13, 270–276 (2019). doi: 10.1038/s41566-019-0389-3

    CrossRef Google Scholar

    [36] Cao GY, Lin H, Fraser S, Zheng XR, Del Rosal B et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl Mater Interfaces 11, 20298–20303 (2019). doi: 10.1021/acsami.9b05109

    CrossRef Google Scholar

    [37] Mondal PP, Diaspro A. Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy. Sci Rep 1, 149 (2011). doi: 10.1038/srep00149

    CrossRef Google Scholar

    [38] Li XP, Cao YY, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt Lett 36, 2510–2512 (2011). doi: 10.1364/OL.36.002510

    CrossRef Google Scholar

    [39] Auñón JM, Qiu CW, Nieto-Vesperinas M. Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source. Phys Rev A 88, 043817 (2013). doi: 10.1103/PhysRevA.88.043817

    CrossRef Google Scholar

    [40] Godin J, Chen CH, Cho SH, Qiao W, Tsai F et al. Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J Biophotonics 1, 355–376 (2008). doi: 10.1002/jbio.200810018

    CrossRef Google Scholar

    [41] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. London: Cambridge University Press, (1999).

    Google Scholar

    [42] Aieta F, Genevet P, Kats MA, Yu NF, Blanchard R et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12, 4932–4936 (2012). doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [43] Mínguez-Vega G, Lancis J, Caraquitena J, Torres-Company V, Andrés P. High spatiotemporal resolution in multifocal processing with femtosecond laser pulses. Opt Lett 31, 2631–2633 (2006). doi: 10.1364/OL.31.002631

    CrossRef Google Scholar

    [44] Lin H, Jia BH, Gu M. Dynamic generation of debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett 36, 406–408 (2011). doi: 10.1364/OL.36.000406

    CrossRef Google Scholar

    [45] Gu M, Lin H, Li XP. Parallel multiphoton microscopy with cylindrically polarized multifocal arrays. Opt Lett 38, 3627–3630 (2013). doi: 10.1364/OL.38.003627

    CrossRef Google Scholar

    [46] Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam. Appl Phys Lett 102, 084103 (2013). doi: 10.1063/1.4794030

    CrossRef Google Scholar

    [47] Zhu LW, Yu JJ, Zhang DW, Sun MY, Chen JN. Multifocal spot array generated by fractional Talbot effect phase-only modulation. Opt Express 22, 9798–9808 (2014). doi: 10.1364/OE.22.009798

    CrossRef Google Scholar

    [48] Nie ZQ, Lin H, Liu XF, Zhai AP, Tian YT et al. Three-dimensional super-resolution longitudinal magnetization spot arrays. Light Sci Appl 6, e17032 (2017). doi: 10.1038/lsa.2017.32

    CrossRef Google Scholar

    [49] Zang XF, Ding HZ, Intaravanne Y, Chen L, Peng Y et al. A multi-foci metalens with polarization-rotated focal points. Laser Photon Rev 13, 1900182 (2019). doi: 10.1002/lpor.201900182

    CrossRef Google Scholar

    [50] Mehmood MQ, Liu H, Huang K, Mei ST, Danner A et al. Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width. Laser Photonics Rev 9, 674–681 (2015). doi: 10.1002/lpor.201500116

    CrossRef Google Scholar

    [51] Li MY, Li WL, Li HY, Zhu YC, Yu YT. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci. Sci Rep 7, 1335 (2017). doi: 10.1038/s41598-017-01492-y

    CrossRef Google Scholar

    [52] Cao GY, Gan XS, Lin H, Jia BH. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron Adv 1, 180012 (2018).

    Google Scholar

    [53] Huang K, Ye HP, Teng JH, Yeo SP, Luk’yanchuk B et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev 8, 152–157 (2014). doi: 10.1002/lpor.201300123

    CrossRef Google Scholar

    [54] Huang K, Qin F, Liu H, Ye HP, Qiu CW et al. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv Mater 30, 1704556 (2018). doi: 10.1002/adma.201704556

    CrossRef Google Scholar

    [55] Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069 (2015). doi: 10.1038/ncomms8069

    CrossRef Google Scholar

    [56] Li XP, Ren HR, Chen X, Liu J, Li Q et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 6, 6984 (2015). doi: 10.1038/ncomms7984

    CrossRef Google Scholar

    [57] Weng XY, Du LP, Shi P, Yuan XC. Tunable optical cage array generated by Dammann vector beam. Opt Express 25, 9039–9048 (2017). doi: 10.1364/OE.25.009039

    CrossRef Google Scholar

    [58] Xu SH, Li YM, Lou LR. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers. Appl Opt 44, 2667–2672 (2005). doi: 10.1364/AO.44.002667

    CrossRef Google Scholar

    [59] Zhao YQ, Zhan QW, Zhang YL, Li YP. Creation of a three-dimensional optical chain for controllable particle delivery. Opt Lett 30, 848–850 (2005). doi: 10.1364/OL.30.000848

    CrossRef Google Scholar

    [60] Zheng XR, Lin H, Yang TS, Jia BH. Laser trimming of graphene oxide for functional photonic applications. J Phys D Appl Phys 50, 074003 (2017). doi: 10.1088/1361-6463/aa54e9

    CrossRef Google Scholar

    [61] Ma YB, Rui GH, Gu B, Cui YP. Trapping and manipulation of nanoparticles using multifocal optical vortex metalens. Sci Rep 7, 14611 (2017). doi: 10.1038/s41598-017-14449-y

    CrossRef Google Scholar

    [62] Hummers Jr WS, Offeman RE. Preparation of graphitic oxide. J Amer Chem Soc 80, 1339 (1958). doi: 10.1021/ja01539a017

    CrossRef Google Scholar

    [63] Boyd SP, Vandenberghe L. Convex Optimization (Cambridge University Press, Cambridge, 2004).

    Google Scholar

    [64] Gu M. Advanced Optical Imaging Theory (Springer, Berlin, 2000).

    Google Scholar

    [65] Ye HP, Qiu CW, Huang K, Teng JH, Luk’yanchuk B et al. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method. Laser Phys Lett 10, 065004 (2013). doi: 10.1088/1612-2011/10/6/065004

    CrossRef Google Scholar

  • Supplementary Information for Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(8351) PDF downloads(1102) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint