Lu QB, Wang YN, Wang XX, Yao Y, Wang XW et al. Review of micromachined optical accelerometers: from mg to sub-μg. Opto-Electron Adv 4, 200045 (2021).. doi: 10.29026/oea.2021.200045
Citation: Lu QB, Wang YN, Wang XX, Yao Y, Wang XW et al. Review of micromachined optical accelerometers: from mg to sub-μg. Opto-Electron Adv 4, 200045 (2021).. doi: 10.29026/oea.2021.200045

Review Open Access

Review of micromachined optical accelerometers: from mg to sub-μg

More Information
  • Micro-Opto-Electro-Mechanical Systems (MOEMS) accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems (MEMS) to enable high precision, small volume and anti-electromagnetic disturbance measurement of acceleration. In recent years, with the in-depth research and development of MOEMS accelerometers, the community is flourishing with the possible applications in seismic monitoring, inertial navigation, aerospace and other industrial and military fields. There have been a variety of schemes of MOEMS accelerometers, whereas the performances differ greatly due to different measurement principles and corresponding application requirements. This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers. According to the optical measurement principle, we divide the MOEMS accelerometers into three categories: the geometric optics based, the wave optics based, and the new optomechanical accelerometers. Regarding the most widely studied category, the wave optics based accelerometers are further divided into four sub-categories, which is based on grating interferometric cavity, Fiber Bragg Grating (FBG), Fabry-Perot cavity, and photonic crystal, respectively. Following a brief introduction to the measurement principles, the typical performances, advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations. This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.
  • 加载中
  • [1] Liu HF. Design, fabrication and characterization of a MEMS gravity gradiometer (Imperial College London, London, 2016).

    Google Scholar

    [2] Yazdi Z, Ayazi F, Najafi K. Micromachined inertial sensors. Proc IEEE 86, 1640 (1998). doi: 10.1109/5.704269

    CrossRef Google Scholar

    [3] Eloy JC. Advanced Microsystems for Automotive Applications 2005 (Springer, Berlin, Heidelberg, 2005).

    Google Scholar

    [4] da Costa Antunes PF, Lima HFT, Alberto NJ, Rodrigues H, Pinto PMF et al. Optical fiber accelerometer system for structural dynamic monitoring. IEEE Sens J 9, 1347–1354 (2009). doi: 10.1109/JSEN.2009.2026548

    CrossRef Google Scholar

    [5] Guo T, Shao LY, Tam HY, Krug PA, Albert J. Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling. Opt Express 17, 20651–20660 (2009). DOI: 10.1117/12.851427

    Google Scholar

    [6] Wang Q, Liu HF, Tu LC. High-precision MEMS inertial sensors for geophysical applications. Navig Control 17, 1 (2018).

    Google Scholar

    [7] Tveten AB, Dandridge A, Davis CM, Giallorenzi TG. Fibre optic accelerometer. Electron Lett 16, 854–856 (1980). doi: 10.1049/el:19800607

    CrossRef Google Scholar

    [8] Abbaspour-Sani E, Huang RS, Kwok CY. A novel optical accelerometer. IEEE Electron Device Lett 16, 166–168 (1995). doi: 10.1109/55.382228

    CrossRef Google Scholar

    [9] Hortschitz W, Kainz A, Kovacs G, Steiner H, Stifter M et al. Robust, ultra sensitive MOEMS inertial sensor read out with infrared light. In Proceedings of 2018 IEEE Micro Electro Mechanical Systems 952–955 (IEEE, 2018); http://doi.org/10.1109/MEMSYS.2018.8346715.

    Google Scholar

    [10] Qin Y, Brockett A, Ma Y, Razali A, Zhao J et al. Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47, 821–837 (2010). doi: 10.1007/s00170-009-2411-2

    CrossRef Google Scholar

    [11] Tilli M, Paulasto-Kröckel M, Petzold M, Theuss H, Motooka T et al. Handbook of Silicon Based MEMS Materials and Technologies 3rd ed (Elsevier, Amsterdam, 2020).

    Google Scholar

    [12] Lu BH, Lan HB, Liu HZ. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv 1, 170004 (2018).

    Google Scholar

    [13] Huang YA, Wu H, Xiao L, Duan YQ, Zhu H et al. Assembly and applications of 3D conformal electronics on curvilinear surfaces. Mater Horiz 6, 642–683 (2019). doi: 10.1039/C8MH01450G

    CrossRef Google Scholar

    [14] Dao DV, Nakamura K, Bui TT, Sugiyama S. Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol 1, 013001 (2010). doi: 10.1088/2043-6254/1/1/013001

    CrossRef Google Scholar

    [15] Zhou GY, Chau FS. Grating-assisted optical microprobing of in-plane and out-of-plane displacements of microelectromechanical devices. J Microelectromech Syst 15, 388–395 (2006). doi: 10.1109/JMEMS.2006.872234

    CrossRef Google Scholar

    [16] Bramsiepe SG, Loomes D, Middlemiss RP, Paul DJ, Hammond GD. A high stability optical shadow sensor with applications for precision accelerometers. IEEE Sens J 18, 4108–4116 (2018). doi: 10.1109/JSEN.2018.2818066

    CrossRef Google Scholar

    [17] Plaza JA, Llobera A, Dominguez C, Esteve J, Salinas I et al. BESOI-based integrated optical silicon accelerometer. J Microelectromech Syst 13, 355–364 (2004). doi: 10.1109/JMEMS.2004.824884

    CrossRef Google Scholar

    [18] Schröpfer G, Elflein W, de Labachelerie M, Porte H, Ballandras S. Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation. Sens Actuat A-Phys 68, 344–349 (1998). doi: 10.1016/S0924-4247(98)00065-X

    CrossRef Google Scholar

    [19] Cadarso VJ, Llobera A, Villanueva G, Seidemann V, Büttgenbach S et al. Polymer microoptoelectromechanical systems: accelerometers and variable optical attenuators. Sens Actuat A-Phys 145, 147–153 (2008).

    Google Scholar

    [20] Llobera A, Seidemann V, Plaza JA, Cadarso VJ, Buttgenbach S. Integrated polymer optical accelerometer. IEEE Photonics Technol Lett 17, 1262–1264 (2005). doi: 10.1109/LPT.2005.846458

    CrossRef Google Scholar

    [21] Llobera A, Seidemann V, Plaza JA, Cadarso VJ, Buttgenbach S. SU-8 optical accelerometers. J Microelectromech Syst 16, 111–121 (2007). doi: 10.1109/JMEMS.2006.885845

    CrossRef Google Scholar

    [22] Pike WT, Standley IM, Calcutt SB, Mukherjee AG. A broad-band silicon microseismometer with 0.25 NG/rtHz performance. In Proceedings of 2018 IEEE Micro Electro Mechanical Systems (MEMS) 113–116 (IEEE, 2018); http://doi.org/10.1109/MEMSYS.2018.8346496.

    Google Scholar

    [23] Middlemiss RP, Samarelli A, Paul DJ, Hough J, Rowan S et al. Measurement of the Earth tides with a MEMS gravimeter. Nature 531, 614–617 (2016). doi: 10.1038/nature17397

    CrossRef Google Scholar

    [24] Tang SH, Liu HF, Yan ST, Xu XC, Wu WJ et al. A high-sensitivity MEMS gravimeter with a large dynamic range. Microsyst Nanoeng 5, 45 (2019). doi: 10.1038/s41378-019-0089-7

    CrossRef Google Scholar

    [25] Mustafazade A, Pandit M, Zhao C, Sobreviela G, Du ZJ et al. A vibrating beam MEMS accelerometer for gravity and seismic measurements. Sci Rep 10, 10415 (2020). doi: 10.1038/s41598-020-67046-x

    CrossRef Google Scholar

    [26] Duan YX, Wei XY, Wang HR, Zhao MH, Ren ZM et al. Design and numerical performance analysis of a microgravity accelerometer with quasi-zero stiffness. Smart Mater Struct 29, 075018 (2020). doi: 10.1088/1361-665X/ab8838

    CrossRef Google Scholar

    [27] Jeong Y, Daruwalla A, Wen H, Ayazi F. An out-of-plane “hinge-shaped” nano-gap accelerometer with high sensitivity and wide bandwidth. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 2131–2134 (IEEE, 2017); http://doi.org/10.1109/TRANSDUCERS.2017.7994496.

    Google Scholar

    [28] Zhang HC, Wei XY, Ding YY, Jiang ZD, Ren J. A low noise capacitive MEMS accelerometer with anti-spring structure. Sens Actuat A-Phys 296, 79–86 (2019). doi: 10.1016/j.sna.2019.06.051

    CrossRef Google Scholar

    [29] Cooper EB, Post ER, Griffith S, Levitan J, Manalis SR et al. High-resolution micromachined interferometric accelerometer. Appl Phys Lett 76, 3316–3318 (2000). doi: 10.1063/1.126637

    CrossRef Google Scholar

    [30] Loh NC, Schmidt MA, Manalis SR. Sub-10 cm3 interferometric accelerometer with nano-g resolution. J Microelectromech Syst 11, 182–187 (2002). doi: 10.1109/JMEMS.2002.1007396

    CrossRef Google Scholar

    [31] Hall NA, Okandan M, Littrell R, Serkland DK, Keeler GA et al. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation. J Microelectromech Syst 17, 37–44 (2008). doi: 10.1109/JMEMS.2007.910243

    CrossRef Google Scholar

    [32] Williams RP, Hord SK, Hall NA. Optically read displacement detection using phase-modulated diffraction gratings with reduced zeroth-order reflections. Appl Phys Lett 110, 151104 (2017). doi: 10.1063/1.4979541

    CrossRef Google Scholar

    [33] Wang X, Feng LS, Yao BY, Ren XY. Sensitivity improvement of micro-grating accelerometer based on differential detection method. Appl Opt 52, 4091–4096 (2013). doi: 10.1364/AO.52.004091

    CrossRef Google Scholar

    [34] Chen LH, Lin Q, Li S, Wu X. Optical accelerometer based on high-order diffraction beam interference. Appl Opt 49, 2658–2664 (2010). doi: 10.1364/AO.49.002658

    CrossRef Google Scholar

    [35] Zhang Y, Gao S, Xiong H, Feng LS. Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error. Opt Express 27, 6565–6579 (2019). doi: 10.1364/OE.27.006565

    CrossRef Google Scholar

    [36] Zhang TH, Liu HL, Feng LS, Wang X, Zhang Y. Noise suppression of a micro-grating accelerometer based on the dual modulation method. Appl Opt 56, 10003–10008 (2017). doi: 10.1364/AO.56.010003

    CrossRef Google Scholar

    [37] Zhao SS, Hou CL, Bai J, Yang GG, Tian F. Nanometer-scale displacement sensor based on phase-sensitive diffraction grating. Appl Opt 50, 1413–1416 (2011). doi: 10.1364/AO.50.001413

    CrossRef Google Scholar

    [38] Zhao SS, Zhang J, Hou CL, Bai J, Yang GG. Optical accelerometer based on grating interferometer with phase modulation technique. Appl Opt 51, 7005–7010 (2012). doi: 10.1364/AO.51.007005

    CrossRef Google Scholar

    [39] Lu QB, Wang C, Bai J, Wang KW, Lian WX et al. Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl Opt 54, 4188–4196 (2015). doi: 10.1364/AO.54.004188

    CrossRef Google Scholar

    [40] Li H, Li SK, Deng KK, Gao S, Feng LS. Analysis and design of closed-loop detection technique for micro-grating accelerometer. J Lightwave Technol 36, 5738–5745 (2018).

    Google Scholar

    [41] Gao S, Zhou Z, Zhang Y, Deng KK, Feng LS. High-resolution micro-grating accelerometer based on a gram-scale proof mass. Opt. Express 27, 34298–34311 (2019). doi: 10.1364/OE.27.034298

    CrossRef Google Scholar

    [42] Li H, Deng KK, Gao S, Feng LS. Design of closed-loop parameters with high dynamic performance for micro-grating accelerometer. IEEE Access 7, 151939–151947 (2019). doi: 10.1109/ACCESS.2019.2947158

    CrossRef Google Scholar

    [43] Zhang Y, Feng LS, Wang X, Wang YJ. Linearity enhancement of scale factor in an optical interrogated micromechanical accelerometer. Appl Opt 55, 6115–6120 (2016). doi: 10.1364/AO.55.006115

    CrossRef Google Scholar

    [44] Lu QB, Wang C, Bai J, Wang KW, Lou SQ et al. Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers. Opt Express 24, 9094–9111 (2016). doi: 10.1364/OE.24.009094

    CrossRef Google Scholar

    [45] Lu QB, Bai J, Wang KW, He SL. Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J Microelectromech Syst 26, 859–869 (2017). doi: 10.1109/JMEMS.2017.2693341

    CrossRef Google Scholar

    [46] Hall NA, Okandan M, Degertekin FL. Surface and bulk-silicon-micromachined optical displacement sensor fabricated with the SwIFT-LiteTM process. J Microelectromech Syst 15, 770–776 (2006). doi: 10.1109/JMEMS.2006.878884

    CrossRef Google Scholar

    [47] Berkoff TA, Kersey AD. Experimental demonstration of a fiber Bragg grating accelerometer. IEEE Photonics Technol Lett 8, 1677–1679 (1996). doi: 10.1109/68.544716

    CrossRef Google Scholar

    [48] Linze N, Tihon P, Verlinden O, Mégret P, Wuilpart M. Development of a multi-point polarization-based vibration sensor. Opti Express 21, 5606–5624 (2013). doi: 10.1364/OE.21.005606

    CrossRef Google Scholar

    [49] Li TL, Shi CY, Ren HL. A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution. IEEE Photonics Technol Lett 29, 1199–1202 (2017). doi: 10.1109/LPT.2017.2712602

    CrossRef Google Scholar

    [50] Mita A, Yokoi I. Fiber Bragg grating accelerometer for buildings and civil infrastructures. Proc SPIE 4330, 479–486 (2001). doi: 10.1117/12.434148

    CrossRef Google Scholar

    [51] Weng YY, Qiao XG, Guo T, Hu ML, Feng ZY et al. A robust and compact fiber Bragg grating vibration sensor for seismic measurement. IEEE Sens J 12, 800–804 (2012). doi: 10.1109/JSEN.2011.2166258

    CrossRef Google Scholar

    [52] Munendhar P, Khijwania SK. Two dimensional fiber Bragg grating based vibration sensor for structural health monitoring. AIP Conference Proceedings 1536, 1324–1326 (2013).

    Google Scholar

    [53] Peng BJ, Zhao Y, Zhao Y, Yang J. Tilt sensor with FBG technology and matched FBG demodulating method. IEEE Sens J 6, 63–66 (2006). doi: 10.1109/JSEN.2005.845198

    CrossRef Google Scholar

    [54] Guan BO, Tam HY, Liu SY. Temperature-independent fiber Bragg grating tilt sensor. IEEE Photonics Technol Lett 16, 224–226 (2004). doi: 10.1109/LPT.2003.820101

    CrossRef Google Scholar

    [55] Bao HL, Dong XY, Gong HP, Chan CC, Shum P. Temperature-insensitive FBG tilt sensor with a large measurement range. In Proceedings of 2009 Asia Communications and Photonics conference and Exhibition (ACP) 1–5 (IEEE, 2009). DOI: 10.1117/12.851427

    Google Scholar

    [56] He SL, Dong XY, Ni K, Jin YX, Chan C et al. Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings. Meas Sci Technol 21, 025203 (2010). doi: 10.1088/0957-0233/21/2/025203

    CrossRef Google Scholar

    [57] Dong XY, Zhan C, Hu K, Shum P, Chan CC. Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings. IEEE Photonics Technol Lett 17, 2394–2396 (2005). doi: 10.1109/LPT.2005.857978

    CrossRef Google Scholar

    [58] Ferdinand P. Optical fiber Bragg grating inclinometry for smart civil engineering and public works. Proc SPIE 41855, 41855O (2000).

    Google Scholar

    [59] Aneesh R, Maharana M, Munendhar P, Tam HY, Khijwania SK. Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability. Appl Opt 50, E172–E176 (2011). doi: 10.1364/AO.50.00E172

    CrossRef Google Scholar

    [60] Bao HL, Dong XY, Shao LY, Zhao CL, Jin SZ. Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum. Opt Commun 283, 5021–5024 (2010). doi: 10.1016/j.optcom.2010.07.050

    CrossRef Google Scholar

    [61] Fernandes CS, Giraldi MTMR, de Sousa MJ, Costa JCWA, Gouveia C et al. Curvature and vibration sensing based on core diameter mismatch structures. IEEE Trans Instrum Meas 65, 2120–2128 (2016). doi: 10.1109/TIM.2016.2571378

    CrossRef Google Scholar

    [62] Li K, Chan THT, Yau MH, Nguyen T, Thambiratnam DP et al. Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity. Appl Opt 52, 6401–6410 (2013). doi: 10.1364/AO.52.006401

    CrossRef Google Scholar

    [63] Li TL, Shi CY, Tan YG, Li RY, Zhou ZD et al. A diaphragm type fiber Bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation. IEEE Sens J 17, 1021–1029 (2017).

    Google Scholar

    [64] Erdogan T, Sipe JE. Tilted fiber phase gratings. J Opt Soc Am A 13, 296–313 (1996). doi: 10.1364/JOSAA.13.000296

    CrossRef Google Scholar

    [65] Lee KS, Erdogan T. Fiber mode coupling in transmissive and reflective tilted fiber gratings. Appl Opt 39, 1394–1404 (2000). doi: 10.1364/AO.39.001394

    CrossRef Google Scholar

    [66] Kang SC, Kim SY, Lee SB, Kwon SW, Choi SS et al. Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator. IEEE Photonics Technol Lett 10, 1461–1463 (1998). doi: 10.1109/68.720294

    CrossRef Google Scholar

    [67] Laffont G, Ferdinand P, Technology. Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry. Meas Sci Technol 12, 765–770 (2001). doi: 10.1088/0957-0233/12/7/302

    CrossRef Google Scholar

    [68] Shevchenko YY, Albert J. Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett 32, 211–213 (2007). doi: 10.1364/OL.32.000211

    CrossRef Google Scholar

    [69] Chehura E, James SW, Tatam RP. Temperature and strain discrimination using a single tilted fibre Bragg grating. Opt Commun 275, 344–347 (2007). doi: 10.1016/j.optcom.2007.03.043

    CrossRef Google Scholar

    [70] Zhou B, Zhang AP, He SL, Gu BB. Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section. IEEE Photonics J 2, 152–157 (2010). doi: 10.1109/JPHOT.2010.2043246

    CrossRef Google Scholar

    [71] Helan R, Urban Jr F, Mikel B, Sr FU. Preparation and measurement of TFBG based vibration sensor. Proc SPIE 92864, 92864D (2014).

    Google Scholar

    [72] Huang YH, Guo TA, Lu C, Tam HY. Vcsel-based tilted fiber grating vibration sensing system. IEEE Photonics Technol Lett 22, 1235–1237 (2010). doi: 10.1109/LPT.2010.2052797

    CrossRef Google Scholar

    [73] Shao LY, Xiong LY, Chen CK, Laronche A, Albert J. Directional bend sensor based on re-grown tilted fiber Bragg grating. J Lightwave Technol 28, 2681–2687 (2010). doi: 10.1109/JLT.2010.2064158

    CrossRef Google Scholar

    [74] Shao LY, Albert J. Compact fiber-optic vector inclinometer. Opt Lett 35, 1034–1036 (2010). doi: 10.1364/OL.35.001034

    CrossRef Google Scholar

    [75] Basumallick N, Chatterjee I, Biswas P, Dasgupta K, Bandyopadhyay S. Fiber Bragg grating accelerometer with enhanced sensitivity. Sens Actuat A-Phys 173, 108–115 (2012). doi: 10.1016/j.sna.2011.10.026

    CrossRef Google Scholar

    [76] Basumallick N, Biswas P, Dasgupta K, Bandyopadhyay S. Design optimization of fiber Bragg grating accelerometer for maximum sensitivity. Sens Actuat A-Phys 194, 31–39 (2013). doi: 10.1016/j.sna.2013.01.039

    CrossRef Google Scholar

    [77] Khan MM, Panwar N, Dhawan R. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation. Sens Actuat A-Phys 205, 79–85 (2014). doi: 10.1016/j.sna.2013.10.027

    CrossRef Google Scholar

    [78] Liu QP, Qiao XG, Jia ZA, Fu HW, Gao H et al. Large frequency range and high sensitivity fiber Bragg grating accelerometer based on double diaphragms. IEEE Sens J 14, 1499–1504 (2014). doi: 10.1109/JSEN.2013.2296932

    CrossRef Google Scholar

    [79] Liu QP, Qiao XG, Zhao JL, Jia ZA, Gao H et al. Novel fiber Bragg grating accelerometer based on diaphragm. IEEE Sens J 12, 3000–3004 (2012). doi: 10.1109/JSEN.2012.2201464

    CrossRef Google Scholar

    [80] Zhu YN, Shum P, Lu C, Lacquet BM, Swart PL et al. Temperature-insensitive fiber Bragg grating accelerometer. IEEE Photonics Technol Lett 15, 1437–1439 (2003). doi: 10.1109/LPT.2003.818048

    CrossRef Google Scholar

    [81] Zhou WJ, Dong XY, Shen CY, Zhao CL, Chan CC et al. Temperature-independent vibration sensor with a fiber bragg grating. Microw Opt Technol Lett 52, 2282–2285 (2010). doi: 10.1002/mop.25429

    CrossRef Google Scholar

    [82] Todd MD, Johnson GA, Althouse BA, Vohra ST. Flexural beam-based fiber Bragg grating accelerometers. IEEE Photonics Technol Lett 10, 1605–1607 (1998). doi: 10.1109/68.726764

    CrossRef Google Scholar

    [83] Gutiérrez N, Galvín P, Lasagni F. Low weight additive manufacturing FBG accelerometer: design, characterization and testing. Measurement 117, 295–303 (2018). doi: 10.1016/j.measurement.2017.12.030

    CrossRef Google Scholar

    [84] Li K, Liu GY, Li YQ, Yang J, Ma WL. Ultra-small fiber bragg grating accelerometer. Appl Sci 9, 2707 (2019). doi: 10.3390/app9132707

    CrossRef Google Scholar

    [85] Wei L, Jiang DZ, Yu LL, Li HC, Liu Z. A novel miniaturized fiber bragg grating vibration sensor. IEEE Sens J 19, 11932–11940 (2019). doi: 10.1109/JSEN.2019.2936596

    CrossRef Google Scholar

    [86] Gerges AS, Newson TP, Jackson DA. Practical fiber-optic-based submicro-g accelerometer free from source and environmental perturbations. Appl Sci 14, 1155–1157 (1989).

    Google Scholar

    [87] Stephens M. A sensitive interferometric accelerometer. Rev Sci Instrum 64, 2612–2614 (1993). doi: 10.1063/1.1143878

    CrossRef Google Scholar

    [88] Wang DH, Jia PG. Fiber optic extrinsic Fabry-Perot accelerometer using laser emission frequency modulated phase generated carrier demodulation scheme. Opt Eng 52, 055004 (2013). doi: 10.1117/1.OE.52.5.055004

    CrossRef Google Scholar

    [89] Gerges AS, Newson TP, Jones JDC, Jackson DA. High-sensitivity fiber-optic accelerometer. Opt Lett 14, 251–253 (1989). doi: 10.1364/OL.14.000251

    CrossRef Google Scholar

    [90] Lin QA, Chen LH, Li S, Wu X. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation. Meas Sci Technology 22, 015303 (2011). doi: 10.1088/0957-0233/22/1/015303

    CrossRef Google Scholar

    [91] Yu B, Wang AB, Pickrell GR. Analysis of fiber Fabry-Pérot interferometric sensors using low-coherence light sources. J Lightwave Technol 24, 1758–1767 (2006). doi: 10.1109/JLT.2005.863336

    CrossRef Google Scholar

    [92] Guo JJ, Yang CX. Non-contact fiber vibration sensor based on intracavity modulation of an extrinsic Fabry-Perot interferometer. IEEE Sens J 15, 7229–7233 (2015). doi: 10.1109/JSEN.2015.2464679

    CrossRef Google Scholar

    [93] Liu B, Lin J, Liu H, Ma Y, Yan L et al. Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier. Opt Commun 382, 514–518 (2017). doi: 10.1016/j.optcom.2016.08.013

    CrossRef Google Scholar

    [94] Jia PG, Wang DH. Temperature-compensated fiber optic Fabry-Perot accelerometer based on the feedback control of the Fabry-Perot cavity length. Chin Opt Lett 11, 8–12 (2013).

    Google Scholar

    [95] Wang XD, Li BQ, Xiao ZX, Lee SH, Roman H et al. An ultra-sensitive optical MEMS sensor for partial discharge detection. J Micromech Microeng 15, 521–527 (2005). doi: 10.1088/0960-1317/15/3/012

    CrossRef Google Scholar

    [96] Davies E, George DS, Gower MC, Holmes AS. MEMS Fabry-Pérot optical accelerometer employing mechanical amplification via a V-beam structure. Sens Actuat A-Phys 215, 22–29 (2014). doi: 10.1016/j.sna.2013.08.002

    CrossRef Google Scholar

    [97] Zhao ZH, Yu ZH, Chen K, Yu QX. A fiber-optic fabry-perot accelerometer based on high-speed white light interferometry demodulation. J Lightwave Technol 36, 1562–1567 (2018). doi: 10.1109/JLT.2017.2783882

    CrossRef Google Scholar

    [98] Kippenberg TJ, Vahala KJ. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008). doi: 10.1126/science.1156032

    CrossRef Google Scholar

    [99] Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev Mod Phys 86, 1391–1452 (2014). doi: 10.1103/RevModPhys.86.1391

    CrossRef Google Scholar

    [100] Bowen WP, Milburn GJ. Quantum Optomechanics. (CRC Press, Boca Raton, 2015).

    Google Scholar

    [101] Meystre P. A short walk through quantum optomechanics. Ann Phys 525, 215–233 (2013). doi: 10.1002/andp.201200226

    CrossRef Google Scholar

    [102] Maimaiti W, Li Z, Chesi S, Wang Y. Entanglement concentration with strong projective measurement in an optomechanical system. SCIENCE CHINA Physics, Mechanics & Astronomy 58, 1–6 (2015). DOI: 10.1007/s11433-015-5657-8

    Google Scholar

    [103] Cervantes FG, Kumanchik L, Pratt J, Taylor JM. High sensitivity optomechanical reference accelerometer over 10 kHz. Appl Phys Lett 104, 221111 (2014). doi: 10.1063/1.4881936

    CrossRef Google Scholar

    [104] Bao YL, Cervantes FG, Balijepalli A, Lawall JR, Taylor JM et al. An optomechanical accelerometer with a high-finesse hemispherical optical cavity. In Proceedings of 2016 IEEE International Symposium on Inertial Sensors and Systems 105–108 (IEEE, 2016); http://doi.org/10.1109/ISISS.2016.7435556.

    Google Scholar

    [105] Gerberding O, Cervantes FG, Melcher J, Pratt JR, Taylor JM. Optomechanical reference accelerometer. Metrologia 52, 654–665 (2015). doi: 10.1088/0026-1394/52/5/654

    CrossRef Google Scholar

    [106] Li J, Sun JN, Miliar MM, Dong FZ, Maier RRJ et al. Two-dimensional optical fibre cantilever accelerometer. Proc SPIE 96341, 96341E (2015).

    Google Scholar

    [107] Liu B, Zhong Z, Lin J, Wang X, Liu L et al. Extrinsic Fabry-Perot cantilever accelerometer based on micromachined 45° angled fiber. J Lightwave Technol 36, 2196–2203 (2018). doi: 10.1109/JLT.2017.2760901

    CrossRef Google Scholar

    [108] Han J, Zhang WT, Wang ZG, Sun BC, Xu BH et al. Fiber optical accelerometer based on 45 degrees Fabry-Perot cavity. Proc SPIE 9274, 927418 (2014). doi: 10.1117/12.2071090

    CrossRef Google Scholar

    [109] Zeng N, Shi CZ, Zhang M, Wang LW, Liao YB et al. A 3-component fiber-optic accelerometer for well logging. Opt Commun 234, 153–162 (2004). doi: 10.1016/j.optcom.2004.02.008

    CrossRef Google Scholar

    [110] Morikawa SRK, Ribeiro AS, Regazzi RD, Valente LCG, Braga AMB. Triaxial Bragg grating accelerometer. In Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533) 95–98 (IEEE, 2002); http://doi.org/10.1109/OFS.2002.1000510.

    Google Scholar

    [111] Amarasinghe R, Dao DV, Toriyama T, Sugiyama S. Design and fabrication of a miniaturized six-degree-of-freedom piezoresistive accelerometer. J Micromech Microeng 15, 1745–1753 (2005). doi: 10.1088/0960-1317/15/9/017

    CrossRef Google Scholar

    [112] Amarasinghe R, Dao DV, Toriyama T, Sugiyama S. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sens Actuat A-Phys 134, 310–320 (2007). doi: 10.1016/j.sna.2006.05.044

    CrossRef Google Scholar

    [113] Sirkis JS, Brennan DD, Putman MA, Berkoff TA, Kersey AD et al. In-line fiber etalon for strain measurement. Opt Lett 18, 1973–1975 (1993). doi: 10.1364/OL.18.001973

    CrossRef Google Scholar

    [114] Liu WL, Li WZ, Yao JP. Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol Lett 23, 1340–1342 (2011). doi: 10.1109/LPT.2011.2160624

    CrossRef Google Scholar

    [115] Echevarria J, Quintela A, Jauregui C, Lopez-Higuera JM. Uniform fiber Bragg grating first-and second-order diffraction wavelength experimental characterization for strain-temperature discrimination. IEEE Photonics Technol Lett 13, 696–698 (2001). doi: 10.1109/68.930418

    CrossRef Google Scholar

    [116] Shao LY, Dong XY, Zhang AP, Tam HY, He SL. High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser. IEEE Photonics Technol Lett 19, 1598–1600 (2007). doi: 10.1109/LPT.2007.903535

    CrossRef Google Scholar

    [117] Rong QZ, Sun H, Qiao XG, Zhang J, Hu ML et al. A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer. J Opt 14, 045002 (2012). doi: 10.1088/2040-8978/14/4/045002

    CrossRef Google Scholar

    [118] Fender A, MacPherson WN, Maier RRJ, Barton JS, George DS et al. Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings. IEEE Sens J 8, 1292–1298 (2008). doi: 10.1109/JSEN.2008.926878

    CrossRef Google Scholar

    [119] Zhao CL, Yang X, Demokan M, Jin W. Simultaneous temperature and refractive index measurements using a 3°slanted multimode fiber Bragg grating. J. Lightwave Technol 24, 879–883 (2006). doi: 10.1109/JLT.2005.862471

    CrossRef Google Scholar

    [120] Zhang Q, Zhu T, Hou YS, Chiang KS. All-fiber vibration sensor based on a Fabry–Perot interferometer and a microstructure beam. J Opt Soc Am B 30, 1211–1215 (2013). doi: 10.1364/JOSAB.30.001211

    CrossRef Google Scholar

    [121] Gagliardi G, Salza M, Ferraro P, De Natale P, Di Maio A et al. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Meas Sci Technol 19, 085306 (2008). doi: 10.1088/0957-0233/19/8/085306

    CrossRef Google Scholar

    [122] Tsuda H. Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser. Opt Lett 35, 2349–2351 (2010). doi: 10.1364/OL.35.002349

    CrossRef Google Scholar

    [123] Ma WY, Jiang Y, Zhang H, Zhang LC, Hu J et al. Miniature on-fiber extrinsic Fabry-Perot interferometric vibration sensors based on micro-cantilever beam. Nanotechnol Rev 8, 293–298 (2019). doi: 10.1515/ntrev-2019-0028

    CrossRef Google Scholar

    [124] Lee YG, Kim DH, Kim CG. Performance of a single reflective grating-based fiber optic accelerometer. Meas Sci Technol 23, 045101 (2012). doi: 10.1088/0957-0233/23/4/045101

    CrossRef Google Scholar

    [125] Ferreira MS, Coelho L, Schuster K, Kobelke J, Santos JL et al. Fabry–Perot cavity based on a diaphragm-free hollow-core silica tube. Opt Lett 36, 4029–4031 (2011). doi: 10.1364/OL.36.004029

    CrossRef Google Scholar

    [126] Xiao GZ, Adnet A, Zhang ZY, Sun FG, Grover CP. Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor. Sens Actuat A-Phys 118, 177–182 (2005). doi: 10.1016/j.sna.2004.08.029

    CrossRef Google Scholar

    [127] Amarasinghe R, Dao DV, Toriyama T, Sugiyama S. Simulation, fabrication and characterization of a three-axis piezoresistive accelerometer. Smart Mater Struct 15, 1691–1699 (2006). doi: 10.1088/0964-1726/15/6/022

    CrossRef Google Scholar

    [128] Rao YJ, Henderson PJ, Jackson DA, Zhang L, Bennion I. Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system. Electron Lett 33, 2063–2064 (1997). doi: 10.1049/el:19971409

    CrossRef Google Scholar

    [129] Yu YL, Tam H, Chung W, Demokan MS. Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature. Opt Lett 25, 1141–1143 (2000). doi: 10.1364/OL.25.001141

    CrossRef Google Scholar

    [130] Jia PG, Wang DH, Yuan G, Jiang XY. An active temperature compensated fiber-optic Fabry-Perot accelerometer system for simultaneous measurement of vibration and temperature. IEEE Sens J 13, 2334–2340 (2013). doi: 10.1109/JSEN.2013.2251879

    CrossRef Google Scholar

    [131] Corres JM, Bravo J, Arregui FJ, Matias IR. Vibration monitoring in electrical engines using an in-line fiber etalon. Sens Actuat A-Phys 132, 506–515 (2006). doi: 10.1016/j.sna.2006.02.026

    CrossRef Google Scholar

    [132] Ke T, Zhu T, Rao YJ, Deng M. Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber. Microw Opt Technol Lett 52, 2531–2535 (2010). doi: 10.1002/mop.25529

    CrossRef Google Scholar

    [133] Zang ZG, Yang WX. Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber. J Appl Phys 109, 103106 (2011). doi: 10.1063/1.3587358

    CrossRef Google Scholar

    [134] Zang ZJ. Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber. Opt Commun 285, 521–526 (2012). doi: 10.1016/j.optcom.2011.11.023

    CrossRef Google Scholar

    [135] Zang ZG, Zhang YJ. Low-switching power (< 45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair. J Mod Opt 59, 161–165 (2012). doi: 10.1080/09500340.2011.622842

    CrossRef Google Scholar

    [136] Xu JC, Wang XW, Cooper KL, Wang AB. Miniature all-silica fiber optic pressure and acoustic sensors. Opt Lett 30, 3269–3271 (2005). doi: 10.1364/OL.30.003269

    CrossRef Google Scholar

    [137] Wang DH, Wang SJ, Jia PG. In-line silica capillary tube all-silica fiber-optic Fabry–Perot interferometric sensor for detecting high intensity focused ultrasound fields. Opt Lett 37, 2046–2048 (2012). doi: 10.1364/OL.37.002046

    CrossRef Google Scholar

    [138] Jaksic Z, Radulovic K, Tanaskovic D. MEMS accelerometer with all-optical readout based on twin-defect photonic crystal waveguide. In Proceedings of the 24th International Conference on Microelectronics 231–234 (IEEE, 2004); http://doi.org/10.1109/ICMEL.2004.1314602.

    Google Scholar

    [139] Huang K, Yu M, Cheng L, Liu J, Cao LQ. A proposal for an optical MEMS accelerometer with high sensitivity based on wavelength modulation system. J Lightwave Technol 37, 5474–5478 (2019). doi: 10.1109/JLT.2019.2934776

    CrossRef Google Scholar

    [140] Huang K, Cao LQ, Zhai PC, Liu PY, Cheng L et al. High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Opt Commun 470, 125392 (2020). doi: 10.1016/j.optcom.2020.125392

    CrossRef Google Scholar

    [141] Sheikhaleh A, Abedi K, Jafari K. An Optical MEMS Accelerometer based on a two-dimensional photonic crystal add-drop filter. J Lightwave Technol 35, 3029–3034 (2017). doi: 10.1109/JLT.2017.2706140

    CrossRef Google Scholar

    [142] Sheikhaleh A, Abedi K, Jafari K. A proposal for an optical mems accelerometer relied on wavelength modulation with one dimensional photonic crystal. J Lightwave Technol 34, 5244–5249 (2016). doi: 10.1109/JLT.2016.2597539

    CrossRef Google Scholar

    [143] Olyaee S, Azizi M. Micro-displacement sensor based on high sensitivity photonic crystal. Photonic Sens 4, 220–224 (2014). doi: 10.1007/s13320-014-0183-2

    CrossRef Google Scholar

    [144] Ritchie RH, Marusak AL. Surface plasmon dispersion relation for an electron gas. Surf Sci 4, 234–240 (1966). doi: 10.1016/0039-6028(66)90003-3

    CrossRef Google Scholar

    [145] Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). doi: 10.1038/35570

    CrossRef Google Scholar

    [146] Nemati A, Wang Q, Hong MH, Teng JH. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018).

    Google Scholar

    [147] Carr DW, Sullivan JP, Friedmann TA. Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis. Opt Lett 28, 1636–1638 (2003). doi: 10.1364/OL.28.001636

    CrossRef Google Scholar

    [148] Keeler BEN, Bogart GR, Carr DW. Laterally deformable optical NEMS grating transducers for inertial sensing applications. Proc SPIE 5592, 306–312 (2005). doi: 10.1117/12.571504

    CrossRef Google Scholar

    [149] Krishnamoorthy U, Olsson III RH, Bogart GR, Baker MS, Carr DW et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens Actuat A-Phys 145-146, 283–290 (2008). doi: 10.1016/j.sna.2008.03.017

    CrossRef Google Scholar

    [150] Krause AG, Winger M, Blasius TD, Lin Q, Painter O. A high-resolution microchip optomechanical accelerometer. Nat Photonics 6, 768–772 (2012). doi: 10.1038/nphoton.2012.245

    CrossRef Google Scholar

    [151] Eichenfield M, Camacho R, Chan J, Vahala KJ, Painter O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009). doi: 10.1038/nature08061

    CrossRef Google Scholar

    [152] Lin Q, Rosenberg J, Jiang XS, Vahala KJ, Painter O. Mechanical oscillation and cooling actuated by the optical gradient force. Phys Rev Lett 103, 103601 (2009). doi: 10.1103/PhysRevLett.103.103601

    CrossRef Google Scholar

    [153] Safavi-Naeini AH, Gröblacher S, Hill JT, Chan J, Aspelmeyer M et al. Squeezed light from a silicon micromechanical resonator. Nature 500, 185–189 (2013). doi: 10.1038/nature12307

    CrossRef Google Scholar

    [154] Kim PH, Hauer BD, Doolin C, Souris F, Davis JP. Approaching the standard quantum limit of mechanical torque sensing. Nat Commun 7, 13165 (2016). doi: 10.1038/ncomms13165

    CrossRef Google Scholar

    [155] Zobenica Z, van der Heijden RW, Petruzzella M, Pagliano F, Leijssen R et al. Integrated nano-opto-electro-mechanical sensor for spectrometry and nanometrology. Nat Commun 8, 2216 (2017). doi: 10.1038/s41467-017-02392-5

    CrossRef Google Scholar

    [156] Huang YJ, Flor Flores JG, Li Y, Wang WT, Wang D et al. A chip-scale oscillation-mode optomechanical inertial sensor near the thermodynamical limits. Laser Photonics Rev 14, 1800329 (2020). doi: 10.1002/lpor.201800329

    CrossRef Google Scholar

    [157] Rogers AAA, Kedia S, Samson S, Bhansali S. Verification of evanescent coupling from subwavelength grating pairs. Appl Phys B 105, 833–837 (2011).

    Google Scholar

    [158] Yao BY, Feng LS, Wang X, Liu MH, Zhou Z et al. Design of out-of-plane MOEMS accelerometer with subwavelength gratings. IEEE Photonics Technol Lett 26, 1027–1030 (2014). doi: 10.1109/LPT.2014.2312796

    CrossRef Google Scholar

    [159] Lu QB, Bai J, Wang KW, Chen PW, Fang WD et al. Single Chip-based nano-optomechanical accelerometer based on subwavelength grating pair and rotated serpentine springs. Sensors 18, 2036 (2018). doi: 10.3390/s18072036

    CrossRef Google Scholar

    [160] Snadden MJ, McGuirk JM, Bouyer P, Haritos KG, Kasevich MA. Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer. Phys Rev Lett 81, 971–974 (1998). doi: 10.1103/PhysRevLett.81.971

    CrossRef Google Scholar

    [161] Peters A, Chung KY, Chu S. High-precision gravity measurements using atom interferometry. Metrologia 38, 25–61 (2001). doi: 10.1088/0026-1394/38/1/4

    CrossRef Google Scholar

    [162] McGuirk JM, Foster GT, Fixler JB, Snadden MJ, Kasevich MA. Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A 65, 033608 (2002). doi: 10.1103/PhysRevA.65.033608

    CrossRef Google Scholar

    [163] Kovachy T, Asenbaum P, Overstreet C, Donnelly CA, Dickerson SM et al. Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015). doi: 10.1038/nature16155

    CrossRef Google Scholar

    [164] Armata F, Latmiral L, Plato ADK, Kim MS. Quantum limits to gravity estimation with optomechanics. Phys Rev A 96, 043824 (2017). doi: 10.1103/PhysRevA.96.043824

    CrossRef Google Scholar

    [165] Qvarfort S, Serafini A, Barker PF, Bose S. Gravimetry through non-linear optomechanics. Nat Commun 9, 3690 (2018). doi: 10.1038/s41467-018-06037-z

    CrossRef Google Scholar

    [166] Arvanitaki A, Geraci AA. Detecting high-frequency gravitational waves with optically levitated sensors. Phys Rev Lett 110, 071105 (2013). doi: 10.1103/PhysRevLett.110.071105

    CrossRef Google Scholar

    [167] Gietka K, Mivehvar F, Ritsch H. Supersolid-based gravimeter in a ring cavity. Phys Rev Lett 122, 190801 (2019). doi: 10.1103/PhysRevLett.122.190801

    CrossRef Google Scholar

    [168] Purdy TP, Peterson RW, Regal CA. Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801–804 (2013). doi: 10.1126/science.1231282

    CrossRef Google Scholar

    [169] Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H et al. Atom-chip fountain gravimeter. Phys Rev Lett 117, 203003 (2016). doi: 10.1103/PhysRevLett.117.203003

    CrossRef Google Scholar

    [170] Cheiney P, Fouché L, Templier S, Napolitano F, Battelier B et al. Navigation-compatible hybrid quantum accelerometer using a kalman filter. Phys Rev Appl 10, 034030 (2018). doi: 10.1103/PhysRevApplied.10.034030

    CrossRef Google Scholar

    [171] Metcalfe M. Applications of cavity optomechanics. Appl Phys Rev 1, 031105 (2014). doi: 10.1063/1.4896029

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(30)

Tables(1)

Article Metrics

Article views(19199) PDF downloads(2145) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint