3D printing is disrupting the design and manufacture of electronic products. 3D printing electronics offers great potential to build complex object with multiple functionalities. Particularly, it has shown the unique ability to make embedded electronics, 3D structural electronics, conformal electronics, stretchable electronics, etc. 3D printing electronics has been considered as the next frontier in additive manufacturing and printed electronics. Over the past five years, a large number of studies and efforts regarding 3D printing electronics have been carried out by both academia and industries. In this paper, a comprehensive review of recent advances and significant achievements in 3D printing electronics is provided. Furthermore, the prospects, challenges and trends of 3D printing electronics are discussed. Finally, some promising solutions for producing electronics with 3D printing are presented.
Home > Journal Home > Opto-Electronic Advances
Opto-Electronic Advances
ISSN: 2096-4579
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
Additive manufacturing frontier: 3D printing electronics
Author Affiliations

First published at:Feb 09, 2018
Abstract
References
1 Gibson I, Rosen D W, Stucker B. Additive manufacturing technologies (Springer, New York, 2010).
2 Derby B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012). DOI:10.1126/science.1226340
3 Lewis J A, Ahn B Y. Device fabrication: Three-dimensional printed electronics. Nature 518, 42–43 (2015). DOI:10.1038/518042a
4 Kong Y L, Tamargo I A, Kim H, Johnson B N, Gupta M K et al. 3D printed quantum dot light-emitting diodes. Nano Lett 14, 7017–7023 (2014). DOI:10.1021/nl5033292
5 Lan H. Active mixing nozzle for multimaterial and multiscale three-dimensional printing.J Micro Nano-Manuf 5, 040904 (2017). DOI:10.1115/1.4037831
6 Zheng X, Smith W, Jackson J, Moran B, Cui H et al. Multiscale metallic metamaterials. Nature Mater 15, 1100–1106 (2016). DOI:10.1038/nmat4694
7 Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67, 1721–1754 (2013). DOI:10.1007/s00170-012-4605-2
9 Espalin D, Muse D. W, MacDonald E, Wicker R B. 3D Printing multifunctionality: structures with electronics. Int J Adv Manuf Technol 72, 963–978 (2014). DOI:10.1007/s00170-014-5717-7
10 Lu Y, Vatani M, Choi J W. Direct-write/cure conductive polymer nanocomposites for 3D structural electronics. J Mech Sci Technol 27, 2929–2934 (2013). DOI:10.1007/s12206-013-0805-4
11 Muth J T, Vogt D M, Truby R L, Mengüç Y, Kolesky D B et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater26, 6307–6312 (2014). DOI:10.1002/adma.201400334
12 Wu S Y, Yang C, Hsu W, Lin L. 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsys Nanoeng 1: 15013 (2015). DOI:10.1038/micronano.2015.13
13 Sun K, Wei T S, Ahn B Y, Seo J Y, Dillon S J et al. 3D Printing of interdigitated Li-Ion microbattery architectures.Adv Mater 25, 4539–4543 (2013). DOI:10.1002/adma.201301036
14 Lehmhus D, Aumund-Kopp C, Petzoldt F, Godlinskic D, Haberkorn A et al. Customized smartness: a survey on links between additive manufacturing and sensor integration.Procedia Tech 26: 284–301 (2016). DOI:10.1016/j.protcy.2016.08.038
15 Ladd C, So J H, Muth J, Dickey M D. 3D printing of free standing liquid metal microstructures.Adv Mater 25, 5081–5085 (2013). DOI:10.1002/adma.201301400
16 Lifton V A, Lifton G, Simon S. Options for additive rapid prototyping methods (3D printing) in MEMS technology. Rapid Prototyping J 20, 403–412 (2014). DOI:10.1108/RPJ-04-2013-0038
17 MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science 353: aaf2093 (2016). DOI:10.1126/science.aaf2093
18 Wicker R B, MacDonald E W. Multi-material, multi-technology stereolithography. Virtual Phys Prototyping 7, 181–194 (2012). DOI:10.1080/17452759.2012.721119
19 Kief C J, Aarestad J, Macdonald E, Shemelya C, Roberson D A et al. Printing multi-functionality: additive manufacturing for CubeSats. In AIAA SPACE 2014 Conference and Exposition, AIAA SPACE Forum 4193 (AIAA, 2014); https://doi.org/10.2514/6.2014-4193
20 Liang M, Shemelya C, MacDonald E, Wicker R, Xin H. 3D printed microwave patch antenna via fused deposition method and ultrasonic wire mesh embedding technique. IEEE Antennas Wireless Propag Lett 14, 1346–1349 (2015). DOI:10.1109/LAWP.2015.2405054
21 Shemelya C, Cedillos F, Aguilera E, Espalin D, Muse D et al. Encapsulated copper wire and copper mesh capacitive sensing for 3-D printing applications. IEEE Sens J 15, 1280–1286 (2015). DOI:10.1109/JSEN.2014.2356973
22 Ready S, Whiting G, Ng T N. Multi-material 3D printing. In NIP & Digital Fabrication Conference, 2014 International Conference on Digital Printing Technologies 120–123 (2014).
23 Pa P, Larimore Z, Parsons P, Mirotznik M. Multi-material additive manufacturing of embedded low-profile antennas. Electron Lett 51, 1561–1562 (2015). DOI:10.1049/el.2015.2186
24 Lopes A J, MacDonald E, Wicker R B. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyping J 18, 129–143 (2012). DOI:10.1108/13552541211212113
25 Jang S H, Oh S T, Lee I H, Kim H C, Cho H Y. 3-Dimensional circuit device fabrication process using stereolithography and direct writing. Int J Precis Eng Man 16, 1361–1367(2015). DOI:10.1007/s12541-015-0179-x
26 Bijadi S. Feasibility of additive manufacturing method for developing stretchable and flexible embedded circuits (University of Minnesota, Minneapolis, USA, 2014).
27 Vatani M, Lu Y, Engeberg E D, Choi J W. Combined 3D printing technologies and material for fabrication of tactile sensors. Int J Precis Eng Man 16, 1375–1383 (2015). DOI:10.1007/s12541-015-0181-3
28 Hedges M. 3D Printed Electronics via Aerosol Jet (Neotech, 2014).
29 Optomec. https://www.optomec.com (2017).
30 Cai F, Pavlidis S, Papapolymerou J, Chang Y H, Wang K et al. Aerosol jet printing for 3-D multilayer passive microwave circuitry. In IEEE European Microwave Conference (IEEE, 2014); http://do.org/10.1109/EuMC.2014.6986483
31 Runge D. 3D-Printing und gedruckte Elektronik für die Medizintechnik (University of Applied Science Bremerhaven, Bremen Area, Germany, 2016).
32 Voxel8. https://www.voxel8.com (2017).
33 Dickey M. Liquid metals for soft and stretchable electronics. In Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems (Springer, Cham, 2016);https://doi.org/10.1007/978-3-319-28694-5_1
34 Rahman M T, Rahimi A, Gupta S, Panata R. Microscale additive manufacturing and modeling of interdigitated capacitive touch sensors. Sensor Actuat A-Phys 248, 94–103 (2016). DOI:10.1016/j.sna.2016.07.014
36 Thompson B, Yoon H S. Aerosol-printed strain sensor using PEDOT: PSS. IEEE Sens J13, 4256–4263 (2013). DOI:10.1109/JSEN.2013.2264482
37 Madden K E, Deshpande A D. On integration of additive manufacturing during the design and development of a rehabilitation robot: a case study. ASME J Mech Des137, 111417 (2015). DOI:10.1115/1.4031123
Keywords:
Export Citations as:
For
Get Citation:
Lu B H, Lan H B, Liu H Z. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv 1, 170004 (2018).
Issue Cover
Cited By(33)
Opto-Electronic Advances, 2018
Advanced Materials Technologies, 2019
Opto-Electronic Advances, 2018
Rapid Prototyping of 3D Printed Liquid Metal Electronics using Hybrid Additive Manufacturing Methods
Additive Patterning of Gallium-based Liquid Metal Alloys at Room Temperature for Rapid Prototyping of Multilayered Microfluidics and 3D Printed Soft Electronics., 2018
Science China Physics, 2019
Optics Letters, 2019
Applied Sciences, 2019
Journal of Micromanufacturing, 2019
ACS Appl. Mater. Interfaces, 2019
Journal of Electronic Packaging, 2019
Nature Communications, 2019
Proc. SPIE 11176, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, 111765F, 2019
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2019
Materiali in tehnologije, 2019
Journal of Electronic Packaging, 2020
Journal of Applied Physics, 2020
, 2020
ACS Applied Materials & Interfaces, 2020
Frontiers of Nanoscience, 2020
Surface and Costings Technology, 2020
Advanced Materials Technologies, 2020
[Journal of Korean Powder Metallurgy Institute], 2020
Journal of Mechanical Design, 2020
Nanotechnology, 2020
Proceedings of the National Academy of Sciences of the United States of America, 2020
Science Advances, 2020
Additive Manufacturing, 2020
American Journal of Applied Sciences, 2019
Chemical Engineering Journal, 2020
Related Articles