Citation: | Wang S C, Ouyang X Y, Feng Z W, Cao Y Y, Gu M et al. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv 1, 170002 (2018). doi: 10.29026/oea.2018.170002 |
[1] | Geim A K, Novoselov K S. The rise of graphene. Nat Mater 6, 183–191 (2007). doi: 10.1038/nmat1849 |
[2] | Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J et al. Graphene-based composite materials. Nature 442, 282–286 (2006). doi: 10.1038/nature04969 |
[3] | Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3, 270–274 (2008). doi: 10.1038/nnano.2008.83 |
[4] | Zhu Y W, Murali S, Cai W W, Li X S, Suk J W et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22, 3906–3924 (2010). doi: 10.1002/adma.201001068 |
[5] | Eda G, Lin Y Y, Miller S, Chen C W, Su W F et al. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92, 233305 (2008). doi: 10.1063/1.2937846 |
[6] | Zhang Y L, Guo L, Wei S, He Y Y, Xia H et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5, 15–20 (2010). doi: 10.1016/j.nantod.2009.12.009 |
[7] | Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9, 4359–4363 (2009). doi: 10.1021/nl902623y |
[8] | El-Kady M F, Strong V, Dubin S, Kaner R B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). doi: 10.1126/science.1216744 |
[9] | Gao W, Singh N, Song L, Liu Z, Reddy A L M et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6, 496–500 (2011). doi: 10.1038/nnano.2011.110 |
[10] | El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4, 1475 (2013). doi: 10.1038/ncomms2446 |
[11] | Robinson J T, Perkins F K, Snow E S, Wei Z Q, Sheehan P E. Reduced graphene oxide molecular sensors. Nano Lett 8, 3137–3140 (2008). doi: 10.1021/nl8013007 |
[12] | Li W W, Geng X M, Guo Y F, Rong J Z, Gong Y P et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5, 6955–6961 (2011). doi: 10.1021/nn201433r |
[13] | Zheng X R, Jia B H, Lin H, Qiu L, Li D et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015). doi: 10.1038/ncomms9433 |
[14] | Li X P, Zhang Q M, Chen X, Gu M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep 3, 2819 (2013). doi: 10.1038/srep02819 |
[15] | Li X P, Ren H R, Chen X, Liu J, Li Q et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 6, 6984 (2015). doi: 10.1038/ncomms7984 |
[16] | Gómez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S et al. Atomic structure of reduced graphene oxide. Nano Lett 10, 1144–1148 (2010). doi: 10.1021/nl9031617 |
[17] | Gao W, Alemany L B, Ci L J, Ajayan P M. New insights into the structure and reduction of graphite oxide. Nat Chem 1, 403–408 (2009). doi: 10.1038/nchem.281 |
[18] | He H Y, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett 287, 53–56 (1998). doi: 10.1016/S0009-2614(98)00144-4 |
[19] | Loh K P, Bao Q L, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2, 1015–1024 (2010). doi: 10.1038/nchem.907 |
[20] | Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007). doi: 10.1016/j.carbon.2007.02.034 |
[21] | Dreyer D R, Park S, Bielawski C W, Ruoff R S. The chemistry of graphene oxide. Chem Soc Rev 39, 228–240 (2010). doi: 10.1039/B917103G |
[22] | Sun X M, Liu Z, Welsher K, Robinson J T, Goodwin A et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1, 203–212 (2008). doi: 10.1007/s12274-008-8021-8 |
[23] | Liu Z, Robinson J T, Sun X M, Dai H J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130, 10876–10877 (2008). doi: 10.1021/ja803688x |
[24] | Pan D Y, Zhang J C, Li Z, Wu M H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22, 734–738 (2010). doi: 10.1002/adma.v22:6 |
[25] | Tung V C, Allen M J, Yang Y, Kaner R B. High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4, 25–29 (2009). doi: 10.1038/nnano.2008.329 |
[26] | Zheng X R, Lin H, Yang T S, Jia B H. Laser trimming of graphene oxide for functional photonic applications. J Phys D Appl Phys 50, 074003 (2017). doi: 10.1088/1361-6463/aa54e9 |
[27] | Trusovas R, Račiukaitis G, Niaura G, Barkauskas J, Valušis G et al. Recent advances in laser utilization in the chemical modification of graphene oxide and its applications. Adv Opt Mater 4, 37–65 (2016). doi: 10.1002/adom.201500469 |
[28] | Robertson J, O'Reilly E P. Electronic and atomic structure of amorphous carbon. Phys Rev B 35, 2946–2957 (1987). doi: 10.1103/PhysRevB.35.2946 |
[29] | Yang D X, Velamakanni A, Bozoklu G, Park S, Stoller M et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152 (2009). doi: 10.1016/j.carbon.2008.09.045 |
[30] | Kotov N A, Dékány I, Fendler J H. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8, 637–641 (1996). doi: 10.1002/adma.19960080806 |
[31] | Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G et al. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131, 15939–15944 (2009). doi: 10.1021/ja907098f |
[32] | Wei Z Q, Wang D B, Kim S, Kim S Y, Hu Y K et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010). doi: 10.1126/science.1188119 |
[33] | Zhou Y, Bao Q L, Varghese B, Tang L A L, Tan C K et al. Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22, 67–71 (2010). doi: 10.1002/adma.v22:1 |
[34] | Zhou Y, Loh K P. Making patterns on graphene. Adv Mater 22, 3615–3620 (2010). doi: 10.1002/adma.201000436 |
[35] | Strong V, Dubin S, El-Kady M F, Lech A, Wang Y et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6, 1395–1403 (2012). doi: 10.1021/nn204200w |
[36] | Trusovas R, Ratautas K, Račiukaitis G, Barkauskas J, Stankevičienė I et al. Reduction of graphite oxide to graphene with laser irradiation. Carbon 52, 574–582 (2013). doi: 10.1016/j.carbon.2012.10.017 |
[37] | Smirnov V A, Arbuzov A A, Shul'ga Y M, Baskakov S A, Martynenko V M et al. Photoreduction of graphite oxide. High Energy Chem 45, 57–61 (2011). doi: 10.1134/S0018143911010176 |
[38] | Zhang Y L, Guo L, Xia H, Chen Q D, Feng J et al. Photoreduction of graphene oxides: methods, properties, and applications. Adv Opt Mater 2, 10 (2014). doi: 10.1002/adom.201300317 |
[39] | Li X P, Lan T H, Tien C H, Gu M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3, 998 (2012). doi: 10.1038/ncomms2006 |
[40] | Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt Lett 36, 2510–2512 (2011). doi: 10.1364/OL.36.002510 |
[41] | Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3, 388–394 (2009). doi: 10.1038/nphoton.2009.111 |
[42] | Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644 |
[43] | Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2 |
[44] | Huang L Q, Chen X Z, Mühlenbernd H, Zhang H, Chen S M et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4, 2808 (2013). |
[45] | Li X, Chen L W, Li Y, Zhang X H, Pu M B et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[46] | Ren H R, Li X P, Zhang Q M, Gu M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805 (2016). doi: 10.1126/science.aaf1112 |
[47] | Li X P, Liu J, Cao L C, Wang Y T, Jin G F et al. Light-control-light nanoplasmonic modulator for 3D micro-optical beam shaping. Adv Opt Mater 4, 70–75 (2016). doi: 10.1002/adom.201500405 |
(a) The chemical structure of a monolayer graphene oxide adapted from the Lerf-Klinowski model18. (b) GO flakes prepared in water solution exhibit brown color before photoreduction and transform into dark color after photoreduction.
(a) GO exhibits a broadband fluorescence emission ranging from 550 nm to 750 nm. rGO displays similar fluorescence emission but with a reduced intensity14. (b) Dispersion relations of refractive indices and extinction coefficients of GO and rGO films26. (c) Raman spectra of GO before and after reduction exhibit prominent peaks at D (1354 cm-1) and G (1599 cm-1) bands14. XPS spectra of GO before (d) and after reduction (e)15.
(a) Schematic illustration of photoreduction and patterning of GO through direct laser writing techniques. Optical microscopic images of patterned rGO samples by femtosecond-pulsed laser beams with a high repetition rate of 80 MHz (b)6 and highly spatially confined reduction by single femtosecond pulses (c).
(a) Retrieved fluorescence image of two patterns recorded through two-photon photoreduction in two layers in GO-polymer sample separated by a spacing of 20 μm. The scale bar is 10 μm14. (b) A complex grayscale photograph patterned through LightScribe methods35.
(a) Schematic illustration of the laser-patterned rGO planar lens13. (b) Topographic profile of the rGO planar lens prepared by direct laser writing methods13. (c) Simulated and experimental results of the intensity distributions of the focal field in the lateral and axial directions13.
(a) Schematic illustration of subwavelength scale and continuously tunable phase modulation in rGO holograms for full-color 3D displays achieved by exquisitely controllable photoreduction15. (b) Photograph of a rGO hologram recorded in a GO-dispersed sample15. (c) The optical image of the rGO holograms generated by laser reduction14. (d) CCD-captured images by focusing at different depths of reconstructed 3D objects, two teapots15. (e) Reconstructed color images of two balloons by rGO-polymer holograms through wavelength multiplexing15.