Wang S C, Ouyang X Y, Feng Z W, Cao Y Y, Gu M et al. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv 1, 170002 (2018). doi: 10.29026/oea.2018.170002
Citation: Wang S C, Ouyang X Y, Feng Z W, Cao Y Y, Gu M et al. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv 1, 170002 (2018). doi: 10.29026/oea.2018.170002

Review Open Access

Diffractive photonic applications mediated by laser reduced graphene oxides

More Information
  • Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producing graphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and scalable production for advanced applications based on tailored optical and electronic properties in the conductivity, the fluorescence and the refractive index during the reduction process. This mini-review summarizes the state-of-the-art status of the mechanisms of reduction of graphene oxides by direct laser writing techniques as well as appealing optical diffractive applications including planar lenses, information storage and holographic displays. Owing to its versatility and up-scalability, the laser reduction method holds enormous potentials for graphene based diffractive photonic devices with diverse functionalities.
  • 加载中
  • [1] Geim A K, Novoselov K S. The rise of graphene. Nat Mater 6, 183–191 (2007). doi: 10.1038/nmat1849

    CrossRef Google Scholar

    [2] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J et al. Graphene-based composite materials. Nature 442, 282–286 (2006). doi: 10.1038/nature04969

    CrossRef Google Scholar

    [3] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3, 270–274 (2008). doi: 10.1038/nnano.2008.83

    CrossRef Google Scholar

    [4] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22, 3906–3924 (2010). doi: 10.1002/adma.201001068

    CrossRef Google Scholar

    [5] Eda G, Lin Y Y, Miller S, Chen C W, Su W F et al. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92, 233305 (2008). doi: 10.1063/1.2937846

    CrossRef Google Scholar

    [6] Zhang Y L, Guo L, Wei S, He Y Y, Xia H et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5, 15–20 (2010). doi: 10.1016/j.nantod.2009.12.009

    CrossRef Google Scholar

    [7] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9, 4359–4363 (2009). doi: 10.1021/nl902623y

    CrossRef Google Scholar

    [8] El-Kady M F, Strong V, Dubin S, Kaner R B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). doi: 10.1126/science.1216744

    CrossRef Google Scholar

    [9] Gao W, Singh N, Song L, Liu Z, Reddy A L M et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6, 496–500 (2011). doi: 10.1038/nnano.2011.110

    CrossRef Google Scholar

    [10] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4, 1475 (2013). doi: 10.1038/ncomms2446

    CrossRef Google Scholar

    [11] Robinson J T, Perkins F K, Snow E S, Wei Z Q, Sheehan P E. Reduced graphene oxide molecular sensors. Nano Lett 8, 3137–3140 (2008). doi: 10.1021/nl8013007

    CrossRef Google Scholar

    [12] Li W W, Geng X M, Guo Y F, Rong J Z, Gong Y P et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5, 6955–6961 (2011). doi: 10.1021/nn201433r

    CrossRef Google Scholar

    [13] Zheng X R, Jia B H, Lin H, Qiu L, Li D et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015). doi: 10.1038/ncomms9433

    CrossRef Google Scholar

    [14] Li X P, Zhang Q M, Chen X, Gu M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep 3, 2819 (2013). doi: 10.1038/srep02819

    CrossRef Google Scholar

    [15] Li X P, Ren H R, Chen X, Liu J, Li Q et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 6, 6984 (2015). doi: 10.1038/ncomms7984

    CrossRef Google Scholar

    [16] Gómez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S et al. Atomic structure of reduced graphene oxide. Nano Lett 10, 1144–1148 (2010). doi: 10.1021/nl9031617

    CrossRef Google Scholar

    [17] Gao W, Alemany L B, Ci L J, Ajayan P M. New insights into the structure and reduction of graphite oxide. Nat Chem 1, 403–408 (2009). doi: 10.1038/nchem.281

    CrossRef Google Scholar

    [18] He H Y, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett 287, 53–56 (1998). doi: 10.1016/S0009-2614(98)00144-4

    CrossRef Google Scholar

    [19] Loh K P, Bao Q L, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2, 1015–1024 (2010). doi: 10.1038/nchem.907

    CrossRef Google Scholar

    [20] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007). doi: 10.1016/j.carbon.2007.02.034

    CrossRef Google Scholar

    [21] Dreyer D R, Park S, Bielawski C W, Ruoff R S. The chemistry of graphene oxide. Chem Soc Rev 39, 228–240 (2010). doi: 10.1039/B917103G

    CrossRef Google Scholar

    [22] Sun X M, Liu Z, Welsher K, Robinson J T, Goodwin A et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1, 203–212 (2008). doi: 10.1007/s12274-008-8021-8

    CrossRef Google Scholar

    [23] Liu Z, Robinson J T, Sun X M, Dai H J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130, 10876–10877 (2008). doi: 10.1021/ja803688x

    CrossRef Google Scholar

    [24] Pan D Y, Zhang J C, Li Z, Wu M H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22, 734–738 (2010). doi: 10.1002/adma.v22:6

    CrossRef Google Scholar

    [25] Tung V C, Allen M J, Yang Y, Kaner R B. High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4, 25–29 (2009). doi: 10.1038/nnano.2008.329

    CrossRef Google Scholar

    [26] Zheng X R, Lin H, Yang T S, Jia B H. Laser trimming of graphene oxide for functional photonic applications. J Phys D Appl Phys 50, 074003 (2017). doi: 10.1088/1361-6463/aa54e9

    CrossRef Google Scholar

    [27] Trusovas R, Račiukaitis G, Niaura G, Barkauskas J, Valušis G et al. Recent advances in laser utilization in the chemical modification of graphene oxide and its applications. Adv Opt Mater 4, 37–65 (2016). doi: 10.1002/adom.201500469

    CrossRef Google Scholar

    [28] Robertson J, O'Reilly E P. Electronic and atomic structure of amorphous carbon. Phys Rev B 35, 2946–2957 (1987). doi: 10.1103/PhysRevB.35.2946

    CrossRef Google Scholar

    [29] Yang D X, Velamakanni A, Bozoklu G, Park S, Stoller M et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152 (2009). doi: 10.1016/j.carbon.2008.09.045

    CrossRef Google Scholar

    [30] Kotov N A, Dékány I, Fendler J H. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8, 637–641 (1996). doi: 10.1002/adma.19960080806

    CrossRef Google Scholar

    [31] Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G et al. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131, 15939–15944 (2009). doi: 10.1021/ja907098f

    CrossRef Google Scholar

    [32] Wei Z Q, Wang D B, Kim S, Kim S Y, Hu Y K et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010). doi: 10.1126/science.1188119

    CrossRef Google Scholar

    [33] Zhou Y, Bao Q L, Varghese B, Tang L A L, Tan C K et al. Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22, 67–71 (2010). doi: 10.1002/adma.v22:1

    CrossRef Google Scholar

    [34] Zhou Y, Loh K P. Making patterns on graphene. Adv Mater 22, 3615–3620 (2010). doi: 10.1002/adma.201000436

    CrossRef Google Scholar

    [35] Strong V, Dubin S, El-Kady M F, Lech A, Wang Y et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6, 1395–1403 (2012). doi: 10.1021/nn204200w

    CrossRef Google Scholar

    [36] Trusovas R, Ratautas K, Račiukaitis G, Barkauskas J, Stankevičienė I et al. Reduction of graphite oxide to graphene with laser irradiation. Carbon 52, 574–582 (2013). doi: 10.1016/j.carbon.2012.10.017

    CrossRef Google Scholar

    [37] Smirnov V A, Arbuzov A A, Shul'ga Y M, Baskakov S A, Martynenko V M et al. Photoreduction of graphite oxide. High Energy Chem 45, 57–61 (2011). doi: 10.1134/S0018143911010176

    CrossRef Google Scholar

    [38] Zhang Y L, Guo L, Xia H, Chen Q D, Feng J et al. Photoreduction of graphene oxides: methods, properties, and applications. Adv Opt Mater 2, 10 (2014). doi: 10.1002/adom.201300317

    CrossRef Google Scholar

    [39] Li X P, Lan T H, Tien C H, Gu M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3, 998 (2012). doi: 10.1038/ncomms2006

    CrossRef Google Scholar

    [40] Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt Lett 36, 2510–2512 (2011). doi: 10.1364/OL.36.002510

    CrossRef Google Scholar

    [41] Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3, 388–394 (2009). doi: 10.1038/nphoton.2009.111

    CrossRef Google Scholar

    [42] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [43] Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [44] Huang L Q, Chen X Z, Mühlenbernd H, Zhang H, Chen S M et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4, 2808 (2013).

    Google Scholar

    [45] Li X, Chen L W, Li Y, Zhang X H, Pu M B et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [46] Ren H R, Li X P, Zhang Q M, Gu M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805 (2016). doi: 10.1126/science.aaf1112

    CrossRef Google Scholar

    [47] Li X P, Liu J, Cao L C, Wang Y T, Jin G F et al. Light-control-light nanoplasmonic modulator for 3D micro-optical beam shaping. Adv Opt Mater 4, 70–75 (2016). doi: 10.1002/adom.201500405

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint