1 Westbergh P, Gustavsson J S, Haglund Å, Skold M, Joel A et al. High-speed, low-current-density 850 nm VCSELs. IEEE J Sel Top Quantum Electron 15, 694-703 (2009).
DOI:
10.1109/JSTQE.2009.2015465
2 Healy S B, O'Reilly E P, Gustavsson J S, Westbergh P, Haglund Å et al. Active region design for high-speed 850-nm VCSELs. IEEE J Quantum Electron 46, 506-512 (2010).
DOI:
10.1109/JQE.2009.2038176
3 Lear K L, Mar A, Choquette K D, Kilcoyne S P, Schneider Jr R P et al. High-frequency modulation of oxide-confined vertical cavity surface emitting lasers. Electron Lett 32, 457-458 (1996).
DOI:
10.1049/el:19960334
4 Lear K L, Hietala V M, Hou H Q, Banas J, Hammons B E et al. High-speed 850 nm oxide-confined vertical cavity surface emitting lasers. In Nuss M, Bowers J. Ultrafast Electronicsand Optoelectronics (Optical Society of America, Washington, DC, 1997).
5 Chang Y H, Kuo H C, Lai F I, Tzeng K F, Yu H C et al. High speed (> 13 GHz) modulation of 850 nm vertical cavity surface emitting lasers (VCSELs) with tapered oxide confined layer. IEE Proc-Optoelectron 152, 170-173 (2005).
DOI:
10.1049/ip-opt:20045068
6 Ou Y, Gustavsson J S, Westbergh P, Haglund A, Larsson A et al. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs. IEEE Photon Technol Lett 21, 1840-1842 (2009).
DOI:
10.1109/LPT.2009.2034618
9 Shi J W, Wei Z R, Chi K L, Jiang J W, Wun J M et al. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. J Lightwave Technol 31, 4037-4044 (2013).
DOI:
10.1109/JLT.2013.2281235
11 Al-Omari A N, Lear K L. VCSELs with a self-aligned contact and copper-plated heatsink. IEEE Photon Technol Lett 17, 1767-1769 (2005).
DOI:
10.1109/LPT.2005.851938
12 Larsson A, Westbergh P, Gustavsson J, Haglund Å. High-speed low-current-density 850 nm VCSELs. Proc SPIE 7615, 761505 (2010).
DOI:
10.1117/12.846824
13 Gholami A, Molin D, Sillard P. Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions. IEEE Photon Technol Lett 21, 645-647 (2009).
DOI:
10.1109/LPT.2009.2015891
14 Blokhin S A, Lott J A, Mutig A, Fiol G, Ledentsov N N et al. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electron Lett 45, 501-503 (2009).
DOI:
10.1049/el.2009.0552
15 Westbergh P, Gustavsson J S, Kgel B, Haglund A, Larsson A et al. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL. Electron Lett 46, 1014-1016 (2010).
DOI:
10.1049/el.2010.1405
16 Szczerba K, Westbergh P, Karout J, Gustavsson J S, Haglund Å et al. 4-PAM for high-speed short-range optical communications. IEEE J Opt Commun Netw 4, 885-894 (2012).
DOI:
10.1364/JOCN.4.000885
17 Choquette K D, Geib K M, Briggs R D, Allerman A A, Hindi J J. Single transverse mode selectively oxidized vertical-cavity lasers. Proc SPIE 3946, 230-233 (2000).
DOI:
10.1117/12.384379
18 Haglund Å, Gustavsson J S, Vukŭsić J, Modh P, Larsson A. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photon Technol Lett 16, 368-370 (2004).
DOI:
10.1109/LPT.2003.821085
19 Furukawa A, Hoshi M, Sasaki S, Matsuzono A, Moritoh K et al. High-power single-transverse-mode holey VCSELs (Invited Paper). Proc SPIE 5722, 183-190 (2005).
DOI:
10.1117/12.601954
20 Safaisini R, Szczerba K, Westbergh P, Haglund E, K gel B et al. High-speed 850 nm Quasi-single-mode VCSELs for extended-reach optical interconnects. IEEE J Opt Commun Netw 5, 686-695 (2013).
DOI:
10.1364/JOCN.5.000686
21 Michalzik R, Ebeling K J. Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes. IEEE J Quantum Electron 31, 1371-1379 (1995).
DOI:
10.1109/3.400387
22 Gustavsson J S, Haglund A, Bengtsson J, Modh P, Larsson A. Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief. IEEE J Quantum Electron 40, 607-619 (2004).
DOI:
10.1109/JQE.2004.828273
23 Liu Y, Ng W C, Klein B, Hess K. Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 39, 99-108 (2003).
DOI:
10.1109/JQE.2002.806205
24 Vakhshoori D, Wynn J D, Zydzik G J, Leibenguth R E, Asom M T et al. Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies. Appl Phys Lett 62, 1448-1450 (1993).
DOI:
10.1063/1.108654
25 MacDougal M H, Geske J, Lin C K, Bond A E, Dapkus P D. Low resistance intracavity-contacted oxide-aperture VCSELs. IEEE Photon Technol Lett 10, 9-11 (1998).
DOI:
10.1109/68.651082
26 Harrison I, Ho H P, Tuck B, Henini M, Hughes O H. Zn diffusion-induced disorder in AlAs/GaAs superlattices. Semicond Sci Technol 4, 841-846 (1989).
DOI:
10.1088/0268-1242/4/10/002
27 Yang Y J, Dziura T G, Bardin T, Wang S C, Fernandez R. Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion. Electron Lett 28, 274-276 (1992).
DOI:
10.1049/el:19920169
28 Shi J W, Chen C C, Wu Y S, Guol S H, Kuo C et al. High-power and high-speed Zn-diffusion single fundamental-mode vertical-cavity surface-emitting lasers at 850-nm wavelength. IEEE Photon Technol Lett 20, 1121-1123 (2008).
DOI:
10.1109/LPT.2008.924645
29 Kao H Y, Chi Y C, Peng C Y, Leong S F, Chang C K et al. Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF. IEEE J Quantum Electron 53, 8000408 (2017).
30 Westbergh P, Safaisini R, Haglund E, K gel B, Gustavsson J S et al. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s. Elect Lett 48, 1145-1147 (2012).
DOI:
10.1049/el.2012.2525
31 Westbergh P, Safaisini R, Haglund E, Gustavsson J S, Larsson A et al. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85oC. IEEE Photon Technol Lett 25, 768-771 (2013).
DOI:
10.1109/LPT.2013.2250946
32 Chi K L, Shi Y X, Chen X N, Chen J, Yang Y J et al. Single-mode 850-nm VCSELs for 54-Gb/s ON-OFF keying transmission over 1-km multi-mode fiber. IEEE Photon Technol Lett 28, 1367-1370 (2016).
DOI:
10.1109/LPT.2016.2542099
33 Szczerba K, Westbergh P, Agrell E, Karlsson M, Andrekson P A et al. Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links. J Lightwave Technol 31, 3525-3534 (2013).
DOI:
10.1109/JLT.2013.2285468
34 Breyer F, Lee S C J, Randel S, Hanik N. Comparison of OOK- and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber. In Optical Fiber Communication/National Fiber Optic Engineers Conference 1-3 (IEEE, 2008); http://doi.org/10.1109/OFC.2008.4528669.
35 Ingham J D, Penty R V, White I H, Westbergh P, Gustavsson J S et al. 32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation data communication standards. In Conference on Lasers and Electro-Optics 1-2 (IEEE, 2011); http://doi.org/10.1364/CLEO_SI.2011.CWJ2.
36 Szczerba K, Westbergh P, Karlsson M, Andrekson P A, Larsson A. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL. Elect Lett 49, 953-955 (2015).
37 Castro J M, Pimpinella R, Kose B, Huang Y, Lane B et al. 200m 2×50 Gb/s PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signaling. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); http://doi.org/10.1364/OFC.2015.W1D.1.
38 Motaghiannezam S M R, Lyubomirsky I, Daghighian H, Kocot C, Gray T et al. 180 Gbps PAM4 VCSEL transmission over 300 m wideband OM4 fibre. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); " target=_blank>http://doi.org/10.1364/OFC.2016.Th3G.2.
39 Lavrencik J, Varughese S, Thomas V A, Landry G, Sun Y et al. 100Gbps PAM-4 transmission over 100m OM4 and wideband fiber using 850nm VCSELs. In 42nd European Conference on Optical Communication 1-3 (IEEE, 2016).
41 Karinou F, Deng L, Lopez R R, Prince K, Jensen J B et al. Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects. Opt Fiber Technol 19, 206-212 (2013).
DOI:
10.1016/j.yofte.2013.01.003
42 Chi Y C, Li Y C, Wang H Y, Peng P C, Lu H H et al. Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode. Opt Express 20, 20071-20077 (2012).
DOI:
10.1364/OE.20.020071
44 Lee S C J, Randel S, Breyer F, Koonen A M J. PAM-DMT for intensity-modulated and direct-detection optical communication systems. IEEE Photon Technol Lett 21, 1749-1751 (2009).
DOI:
10.1109/LPT.2009.2032663
45 Barros D J F, Wilson S K, Kahn J M. Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links. IEEE Trans Commun 60, 153-162 (2012).
DOI:
10.1109/TCOMM.2011.112311.100538
47 Puerta R, Agustin M, Chorchos L, Toήski J, Kropp J R et al. 107. 5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); http://doi.org/10.1364/OFC.2016.Th5B.5.
50 Kao H Y, Chi Y C, Tsai C T, Leong S F, Peng C Y et al. Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber. Photon Res 5, 507-515 (2017).
DOI:
10.1364/PRJ.5.000507
51 Gu X D, Shimada T, Fuchida A, Matsutani A, Imamura A et al. Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier. Appl Phys Lett 99, 211107 (2011).
DOI:
10.1063/1.3664118
52 Koyama F, Gu X D. Beam steering, beam shaping, and intensity modulation based on VCSEL photonics. IEEE J Sel Top Quantum Electron 19, 1701510 (2013).
DOI:
10.1109/JSTQE.2013.2247980
53 Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R. Large-scale nanophotonic phased array. Nature 493, 195-199 (2013).
DOI:
10.1038/nature11727
54 DeRose C T, Kekatpure R D, Trotter D C, Starbuck A, Wendt J R et al. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt Express 21, 5198-5208 (2013).
DOI:
10.1364/OE.21.005198
55 Hulme J C, Doylend J K, Heck M J R, Peters J D, Davenport M L et al. Fully integrated hybrid silicon two dimensional beam scanner. Opt Express 23, 5861-5874 (2015).
DOI:
10.1364/OE.23.005861