Cheng C H, Shen C C, Kao H Y, Hsieh D H, Wang H Y et al. 850/940-nm VCSEL for optical communication and 3D sensing. Opto-Electron Adv 1, 180005 (2018). doi: 10.29026/oea.2018.180005
Citation: Cheng C H, Shen C C, Kao H Y, Hsieh D H, Wang H Y et al. 850/940-nm VCSEL for optical communication and 3D sensing. Opto-Electron Adv 1, 180005 (2018). doi: 10.29026/oea.2018.180005

Review Open Access

850/940-nm VCSEL for optical communication and 3D sensing

More Information
  • This paper is going to review the state-of-the-art of the high-speed 850/940-nm vertical cavity surface emitting laser (VCSEL), discussing the structural design, mode control and the related data transmission performance. InGaAs/AlGaAs multiple quantum well (MQW) was used to increase the differential gain and photon density in VCSEL. The multiple oxide layers and oxide-confined aperture were well designed in VCSEL to decrease the parasitic capacitance and generate single mode (SM) VCSEL. The maximal modulation bandwidth of 30 GHz was achieved with well-designed VCSEL structure. At the end of the paper, other applications of the near-infrared VCSELs are discussed.
  • 加载中
  • [1] Westbergh P, Gustavsson J S, Haglund Å, Skold M, Joel A et al. High-speed, low-current-density 850 nm VCSELs. IEEE J Sel Top Quantum Electron 15, 694-703 (2009). doi: 10.1109/JSTQE.2009.2015465

    CrossRef Google Scholar

    [2] Healy S B, O'Reilly E P, Gustavsson J S, Westbergh P, Haglund Å et al. Active region design for high-speed 850-nm VCSELs. IEEE J Quantum Electron 46, 506-512 (2010). doi: 10.1109/JQE.2009.2038176

    CrossRef Google Scholar

    [3] Lear K L, Mar A, Choquette K D, Kilcoyne S P, Schneider Jr R P et al. High-frequency modulation of oxide-confined vertical cavity surface emitting lasers. Electron Lett 32, 457-458 (1996). doi: 10.1049/el:19960334

    CrossRef Google Scholar

    [4] Lear K L, Hietala V M, Hou H Q, Banas J, Hammons B E et al. High-speed 850 nm oxide-confined vertical cavity surface emitting lasers. In Nuss M, Bowers J. Ultrafast Electronics and Optoelectronics (Optical Society of America, Washington, DC, 1997).

    Google Scholar

    [5] Chang Y H, Kuo H C, Lai F I, Tzeng K F, Yu H C et al. High speed (> 13 GHz) modulation of 850 nm vertical cavity surface emitting lasers (VCSELs) with tapered oxide confined layer. IEE Proc-Optoelectron 152, 170-173 (2005). doi: 10.1049/ip-opt:20045068

    CrossRef Google Scholar

    [6] Ou Y, Gustavsson J S, Westbergh P, Haglund A, Larsson A et al. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs. IEEE Photon Technol Lett 21, 1840-1842 (2009). doi: 10.1109/LPT.2009.2034618

    CrossRef Google Scholar

    [7] Liu M, Wang C Y, Feng M, Holonyak N. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs. In Optical Fiber Communication Conference 1-3 (Optical Society of America, 2016); http://doi.org/10.1364/OFC.2016.Tu3D.2.https://www.osapublishing.org/abstract.cfm?uri=OFC-2016-Tu3D.2

    Google Scholar

    [8] Tanigawa T, Onishi T, Nagai S, Ueda T. High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique. In Conference on Lasers and Electro-Optics 1381- 1383 (IEEE, 2005); http://doi.org/10.1109/CLEO.2005.202132.http://ieeexplore.ieee.org/document/1573198/

    Google Scholar

    [9] Shi J W, Wei Z R, Chi K L, Jiang J W, Wun J M et al. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. J Lightwave Technol 31, 4037-4044 (2013). doi: 10.1109/JLT.2013.2281235

    CrossRef Google Scholar

    [10] Mutig A. Physical processes in lasers and VCSEL design. In High Speed VCSELs for Optical Interconnects (Springer, Berlin, Heidelberg, 2011: 19-84). https://link.springer.com/chapter/10.1007%2F978-3-642-16570-2_2

    Google Scholar

    [11] Al-Omari A N, Lear K L. VCSELs with a self-aligned contact and copper-plated heatsink. IEEE Photon Technol Lett 17, 1767-1769 (2005). doi: 10.1109/LPT.2005.851938

    CrossRef Google Scholar

    [12] Larsson A, Westbergh P, Gustavsson J, Haglund Å. High-speed low-current-density 850 nm VCSELs. Proc SPIE 7615, 761505 (2010). doi: 10.1117/12.846824

    CrossRef Google Scholar

    [13] Gholami A, Molin D, Sillard P. Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions. IEEE Photon Technol Lett 21, 645-647 (2009). doi: 10.1109/LPT.2009.2015891

    CrossRef Google Scholar

    [14] Blokhin S A, Lott J A, Mutig A, Fiol G, Ledentsov N N et al. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electron Lett 45, 501-503 (2009). doi: 10.1049/el.2009.0552

    CrossRef Google Scholar

    [15] Westbergh P, Gustavsson J S, Kgel B, Haglund A, Larsson A et al. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL. Electron Lett 46, 1014-1016 (2010). doi: 10.1049/el.2010.1405

    CrossRef Google Scholar

    [16] Szczerba K, Westbergh P, Karout J, Gustavsson J S, Haglund Å et al. 4-PAM for high-speed short-range optical communications. IEEE J Opt Commun Netw 4, 885-894 (2012). doi: 10.1364/JOCN.4.000885

    CrossRef Google Scholar

    [17] Choquette K D, Geib K M, Briggs R D, Allerman A A, Hindi J J. Single transverse mode selectively oxidized vertical-cavity lasers. Proc SPIE 3946, 230-233 (2000). doi: 10.1117/12.384379

    CrossRef Google Scholar

    [18] Haglund Å, Gustavsson J S, Vukŭsić J, Modh P, Larsson A. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photon Technol Lett 16, 368-370 (2004). doi: 10.1109/LPT.2003.821085

    CrossRef Google Scholar

    [19] Furukawa A, Hoshi M, Sasaki S, Matsuzono A, Moritoh K et al. High-power single-transverse-mode holey VCSELs (Invited Paper). Proc SPIE 5722, 183-190 (2005). doi: 10.1117/12.601954

    CrossRef Google Scholar

    [20] Safaisini R, Szczerba K, Westbergh P, Haglund E, K gel B et al. High-speed 850 nm Quasi-single-mode VCSELs for extended-reach optical interconnects. IEEE J Opt Commun Netw 5, 686-695 (2013). doi: 10.1364/JOCN.5.000686

    CrossRef Google Scholar

    [21] Michalzik R, Ebeling K J. Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes. IEEE J Quantum Electron 31, 1371-1379 (1995). doi: 10.1109/3.400387

    CrossRef Google Scholar

    [22] Gustavsson J S, Haglund A, Bengtsson J, Modh P, Larsson A. Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief. IEEE J Quantum Electron 40, 607-619 (2004). doi: 10.1109/JQE.2004.828273

    CrossRef Google Scholar

    [23] Liu Y, Ng W C, Klein B, Hess K. Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 39, 99-108 (2003). doi: 10.1109/JQE.2002.806205

    CrossRef Google Scholar

    [24] Vakhshoori D, Wynn J D, Zydzik G J, Leibenguth R E, Asom M T et al. Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies. Appl Phys Lett 62, 1448-1450 (1993). doi: 10.1063/1.108654

    CrossRef Google Scholar

    [25] MacDougal M H, Geske J, Lin C K, Bond A E, Dapkus P D. Low resistance intracavity-contacted oxide-aperture VCSELs. IEEE Photon Technol Lett 10, 9-11 (1998). doi: 10.1109/68.651082

    CrossRef Google Scholar

    [26] Harrison I, Ho H P, Tuck B, Henini M, Hughes O H. Zn diffusion-induced disorder in AlAs/GaAs superlattices. Semicond Sci Technol 4, 841-846 (1989). doi: 10.1088/0268-1242/4/10/002

    CrossRef Google Scholar

    [27] Yang Y J, Dziura T G, Bardin T, Wang S C, Fernandez R. Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion. Electron Lett 28, 274-276 (1992). doi: 10.1049/el:19920169

    CrossRef Google Scholar

    [28] Shi J W, Chen C C, Wu Y S, Guol S H, Kuo C et al. High-power and high-speed Zn-diffusion single fundamental-mode vertical-cavity surface-emitting lasers at 850-nm wavelength. IEEE Photon Technol Lett 20, 1121-1123 (2008). doi: 10.1109/LPT.2008.924645

    CrossRef Google Scholar

    [29] Kao H Y, Chi Y C, Peng C Y, Leong S F, Chang C K et al. Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF. IEEE J Quantum Electron 53, 8000408 (2017).

    Google Scholar

    [30] Westbergh P, Safaisini R, Haglund E, K gel B, Gustavsson J S et al. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s. Elect Lett 48, 1145-1147 (2012). doi: 10.1049/el.2012.2525

    CrossRef Google Scholar

    [31] Westbergh P, Safaisini R, Haglund E, Gustavsson J S, Larsson A et al. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85oC. IEEE Photon Technol Lett 25, 768-771 (2013). doi: 10.1109/LPT.2013.2250946

    CrossRef Google Scholar

    [32] Chi K L, Shi Y X, Chen X N, Chen J, Yang Y J et al. Single-mode 850-nm VCSELs for 54-Gb/s ON-OFF keying transmission over 1-km multi-mode fiber. IEEE Photon Technol Lett 28, 1367-1370 (2016). doi: 10.1109/LPT.2016.2542099

    CrossRef Google Scholar

    [33] Szczerba K, Westbergh P, Agrell E, Karlsson M, Andrekson P A et al. Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links. J Lightwave Technol 31, 3525-3534 (2013). doi: 10.1109/JLT.2013.2285468

    CrossRef Google Scholar

    [34] Breyer F, Lee S C J, Randel S, Hanik N. Comparison of OOK- and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber. In Optical Fiber Communication/National Fiber Optic Engineers Conference 1-3 (IEEE, 2008); http://doi.org/10.1109/OFC.2008.4528669.

    Google Scholar

    [35] Ingham J D, Penty R V, White I H, Westbergh P, Gustavsson J S et al. 32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation data communication standards. In Conference on Lasers and Electro-Optics 1-2 (IEEE, 2011); http://doi.org/10.1364/CLEO_SI.2011.CWJ2.

    Google Scholar

    [36] Szczerba K, Westbergh P, Karlsson M, Andrekson P A, Larsson A. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL. Elect Lett 49, 953-955 (2015).

    Google Scholar

    [37] Castro J M, Pimpinella R, Kose B, Huang Y, Lane B et al. 200m 2×50 Gb/s PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signaling. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); http://doi.org/10.1364/OFC.2015.W1D.1.

    Google Scholar

    [38] Motaghiannezam S M R, Lyubomirsky I, Daghighian H, Kocot C, Gray T et al. 180 Gbps PAM4 VCSEL transmission over 300 m wideband OM4 fibre. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); http://doi.org/10.1364/OFC.2016.Th3G.2.

    Google Scholar

    [39] Lavrencik J, Varughese S, Thomas V A, Landry G, Sun Y et al. 100Gbps PAM-4 transmission over 100m OM4 and wideband fiber using 850nm VCSELs. In 42nd European Conference on Optical Communication 1-3 (IEEE, 2016).

    Google Scholar

    [40] Kao H Y, Tsai C T, Leong S F, Peng C Y, Chi Y C et al. Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100-300 m in OM4 MMF. Photon Res. Accepted 17 Dec 2017. Doc. ID: 312994.https://www.osapublishing.org/prj/abstract.cfm?URI=prj-6-7-666

    Google Scholar

    [41] Karinou F, Deng L, Lopez R R, Prince K, Jensen J B et al. Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects. Opt Fiber Technol 19, 206-212 (2013). doi: 10.1016/j.yofte.2013.01.003

    CrossRef Google Scholar

    [42] Chi Y C, Li Y C, Wang H Y, Peng P C, Lu H H et al. Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode. Opt Express 20, 20071-20077 (2012). doi: 10.1364/OE.20.020071

    CrossRef Google Scholar

    [43] Lin C Y, Chi Y C, Tsai C T, Wang H Y, Lin G R. 39-GHz millimeter-wave carrier generation in dual-mode colorless laser diode for OFDM-MMWoF transmission. IEEE J Sel Top Quantum Electron 21, 1801810 (2015).

    Google Scholar

    [44] Lee S C J, Randel S, Breyer F, Koonen A M J. PAM-DMT for intensity-modulated and direct-detection optical communication systems. IEEE Photon Technol Lett 21, 1749-1751 (2009). doi: 10.1109/LPT.2009.2032663

    CrossRef Google Scholar

    [45] Barros D J F, Wilson S K, Kahn J M. Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links. IEEE Trans Commun 60, 153-162 (2012). doi: 10.1109/TCOMM.2011.112311.100538

    CrossRef Google Scholar

    [46] Lu I C, Wei C C, Chen H Y, Chen K Z, Huang C H et al. Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber. IEEE J Sel Top Quantum Electron 21, 1701009 (2015).

    Google Scholar

    [47] Puerta R, Agustin M, Chorchos L, Toήski J, Kropp J R et al. 107. 5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); http://doi.org/10.1364/OFC.2016.Th5B.5.

    Google Scholar

    [48] Tsai C T, Peng C Y, Wu C Y, Leong S F, Kao H Y et al. Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber. IEEE J Quantum Electron 53, 2400608 (2017).

    Google Scholar

    [49] Kao H Y, Tsai C T, Leong S F, Peng C Y, Chi Y C et al. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission. Opt Express 25, 16347-16363 (2017).https://www.osapublishing.org/abstract.cfm?uri=oe-25-14-16347

    Google Scholar

    [50] Kao H Y, Chi Y C, Tsai C T, Leong S F, Peng C Y et al. Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber. Photon Res 5, 507-515 (2017). doi: 10.1364/PRJ.5.000507

    CrossRef Google Scholar

    [51] Gu X D, Shimada T, Fuchida A, Matsutani A, Imamura A et al. Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier. Appl Phys Lett 99, 211107 (2011). doi: 10.1063/1.3664118

    CrossRef Google Scholar

    [52] Koyama F, Gu X D. Beam steering, beam shaping, and intensity modulation based on VCSEL photonics. IEEE J Sel Top Quantum Electron 19, 1701510 (2013). doi: 10.1109/JSTQE.2013.2247980

    CrossRef Google Scholar

    [53] Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R. Large-scale nanophotonic phased array. Nature 493, 195-199 (2013). doi: 10.1038/nature11727

    CrossRef Google Scholar

    [54] DeRose C T, Kekatpure R D, Trotter D C, Starbuck A, Wendt J R et al. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt Express 21, 5198-5208 (2013). doi: 10.1364/OE.21.005198

    CrossRef Google Scholar

    [55] Hulme J C, Doylend J K, Heck M J R, Peters J D, Davenport M L et al. Fully integrated hybrid silicon two dimensional beam scanner. Opt Express 23, 5861-5874 (2015). doi: 10.1364/OE.23.005861

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(17825) PDF downloads(7929) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint