Lu F F, Zhang W D, Huang L G, Liang S H, Mao D et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010 (2018). doi: 10.29026/oea.2018.180010
Citation: Lu F F, Zhang W D, Huang L G, Liang S H, Mao D et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010 (2018). doi: 10.29026/oea.2018.180010

Original Article Open Access

Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip

More Information
  • We present a detailed analysis on mode evolution of grating-coupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guided-wave theory. The eigenvalue equations for SPPs modes are discussed, revealing that cylindrical metal waveguides only support TM01 and HEm1 surface modes. During propagation on the metal tip, the grating-coupled SPPs are converted to HE31, HE21, HE11 and TM01 successively, and these modes are sequentially cut off except TM01. The TM01 mode further propagates with drastically increasing effective mode index and is converted to localized surface plasmons (LSPs) at the tip apex, which is responsible for plasmonic nanofocusing. The gap-mode plasmons can be excited with the focusing TM01 mode by approaching a metal substrate to the tip apex, resulting in further enhanced electric field and reduced size of the plasmonic focus.
  • 加载中
  • [1] Gramotnev D K, Bozhevolnyi S I. Nanofocusing of electromagnetic radiation. Nat Photonics 8, 13-22 (2013).

    Google Scholar

    [2] Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318, 131-136 (2000). doi: 10.1016/S0009-2614(99)01451-7

    CrossRef Google Scholar

    [3] Jiang S, Zhang Y, Zhang R, Hu C R, Liao M H et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat Nanotechnol 10, 865-869 (2015). doi: 10.1038/nnano.2015.170

    CrossRef Google Scholar

    [4] Zhong J H, Jin X, Meng L Y, Wang X, Su H S et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat Nanotechnol 12, 132-136 (2017). doi: 10.1038/nnano.2016.241

    CrossRef Google Scholar

    [5] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392-395 (2010). doi: 10.1038/nature08907

    CrossRef Google Scholar

    [6] Zhang W D, Li C, Gao K, Lu F F, Liu M et al. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology 29, 205301 (2018). doi: 10.1088/1361-6528/aab294

    CrossRef Google Scholar

    [7] Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett 8, 2497-2502 (2008). doi: 10.1021/nl8015297

    CrossRef Google Scholar

    [8] Xu K C, Wang Z Y, Tan C F, Kang N, Chen L W et al. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl Mater Interfaces 9, 26341-26349 (2017). doi: 10.1021/acsami.7b06669

    CrossRef Google Scholar

    [9] Neacsu C C, Reider G A, Raschke M B. Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys Rev B 71, 201402 (2005). doi: 10.1103/PhysRevB.71.201402

    CrossRef Google Scholar

    [10] Kauranen M, Zayats A V. Nonlinear plasmonics. Nat Photonics 6, 737-748 (2012). doi: 10.1038/nphoton.2012.244

    CrossRef Google Scholar

    [11] Jin Y J, Chen L W, Wu M X, Lu X Z, Zhou R et al. Enhanced saturable absorption of the graphene oxide film via photonic nanojets. Opt Mater Express 6, 1114-1121 (2016). doi: 10.1364/OME.6.001114

    CrossRef Google Scholar

    [12] Chen L W, Zheng X R, Du Z R, Jia B H, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale 7, 14982-14988 (2015). doi: 10.1039/C5NR03304G

    CrossRef Google Scholar

    [13] Du Z R, Chen L W, Kao T S, Wu M X, Hong M H. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. Beilstein J Nanotechnol 6, 1199-1204 (2015). doi: 10.3762/bjnano.6.122

    CrossRef Google Scholar

    [14] Chen C, Hayazawa N, Kawata S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat Commun 5, 3312 (2014). doi: 10.1038/ncomms4312

    CrossRef Google Scholar

    [15] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82-86 (2013). doi: 10.1038/nature12151

    CrossRef Google Scholar

    [16] Nerkararyan K V. Superfocusing of a surface polariton in a wedge-like structure. Phys Lett A 237, 103-105 (1997). doi: 10.1016/S0375-9601(97)00722-6

    CrossRef Google Scholar

    [17] Lindquist N C, Nagpal P, Lesuffleur A, Norris D J, Oh S H. Three-dimensional plasmonic nanofocusing. Nano Lett 10, 1369-1373 (2010). doi: 10.1021/nl904294u

    CrossRef Google Scholar

    [18] Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martín-Moreno L, García-Vidal F J et al. Nanofocusing with channel plasmon polaritons. Nano Lett 9, 1278-1282 (2009). doi: 10.1021/nl900268v

    CrossRef Google Scholar

    [19] Fernández-Domínguez A I, Maier S A, Pendry J B. Collection and concentration of light by touching spheres: a transformation optics approach. Phys Rev Lett 105, 266807 (2010). doi: 10.1103/PhysRevLett.105.266807

    CrossRef Google Scholar

    [20] Verhagen E, Polman A, Kuipers L K. Nanofocusing in laterally tapered plasmonic waveguides. Opt Express 16, 45-57 (2008). doi: 10.1364/OE.16.000045

    CrossRef Google Scholar

    [21] Tugchin B N, Janunts N, Klein A E, Steinert M, Fasold S et al. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2, 1468-1475 (2015). doi: 10.1021/acsphotonics.5b00339

    CrossRef Google Scholar

    [22] Stadler J, Schmid T, Zenobi R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 4, 1856-1870 (2012). doi: 10.1039/C1NR11143D

    CrossRef Google Scholar

    [23] Huang T X, Huang S C, Li M H, Zeng Z C, Wang X et al. Tip-enhanced Raman spectroscopy: tip-related issues. Anal Bioanal Chem 407, 8177-8195 (2015). doi: 10.1007/s00216-015-8968-8

    CrossRef Google Scholar

    [24] Verma P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem Rev 117, 6447-6466 (2017). doi: 10.1021/acs.chemrev.6b00821

    CrossRef Google Scholar

    [25] Ropers C, Neacsu C C, Elsaesser T, Albrecht M, Raschke M B et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7, 2784-2788 (2007). doi: 10.1021/nl071340m

    CrossRef Google Scholar

    [26] Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C et al. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett 10, 592-596 (2010). doi: 10.1021/nl903574a

    CrossRef Google Scholar

    [27] Berweger S, Atkin J M, Olmon R L, Raschke M B. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett 3, 945-952 (2012). doi: 10.1021/jz2016268

    CrossRef Google Scholar

    [28] Xu T, Wang C T, Du C L, Luo X G. Plasmonic beam deflector. Opt Express 16, 4753-4759 (2008). doi: 10.1364/OE.16.004753

    CrossRef Google Scholar

    [29] Xu T, Du C L, Wang C T, Luo X G. Subwavelength imaging by metallic slab lens with nanoslits. Appl Phys Lett 91, 201501 (2007). doi: 10.1063/1.2811711

    CrossRef Google Scholar

    [30] Luo X G, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84, 4780 (2004). doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [31] Sadiq D, Shirdel J, Lee J S, Selishcheva E, Park N et al. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett 11, 1609-1613 (2011). doi: 10.1021/nl1045457

    CrossRef Google Scholar

    [32] Müller M, Kravtsov V, Paarmann A, Raschke M B, Ernstorfer R. Nanofocused Plasmon-driven sub-10 fs electron point source. ACS Photonics 3, 611-619 (2016). doi: 10.1021/acsphotonics.5b00710

    CrossRef Google Scholar

    [33] Schmidt S, Piglosiewicz B, Sadiq D, Shirdel J, Lee J S et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6, 6040-6048 (2012). doi: 10.1021/nn301121h

    CrossRef Google Scholar

    [34] Berweger S, Atkin J M, Olmon R L, Raschke M B. Adiabatic Tip-Plasmon focusing for Nano-Raman spectroscopy. J Phys Chem Lett 1, 3427-3432 (2010). doi: 10.1021/jz101289z

    CrossRef Google Scholar

    [35] Kravtsov V, Atkin J M, Raschke M B. Group delay and dispersion in adiabatic plasmonic nanofocusing. Opt Lett 38, 1322-1324 (2013). doi: 10.1364/OL.38.001322

    CrossRef Google Scholar

    [36] Esmann M, Becker S F, da Cunha B B, Brauer J H, Vogelgesang R et al. k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy. Beilstein J Nanotechnol 4, 603-610 (2013). doi: 10.3762/bjnano.4.67

    CrossRef Google Scholar

    [37] Mihaljevic J, Hafner C, Meixner A J. Grating enhanced apertureless near-field optical microscopy. Opt Express 23, 18401-18414 (2015). doi: 10.1364/OE.23.018401

    CrossRef Google Scholar

    [38] Lee J S, Han S, Shirdel J, Koo S, Sadiq D et al. Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method. Opt Express 19, 12342-12347 (2011). doi: 10.1364/OE.19.012342

    CrossRef Google Scholar

    [39] Andrey P. Nanofocusing of surface Plasmons at the apex of metallic probe tips. J Nanoelectron Optoe 5, 310-314 (2010). doi: 10.1166/jno.2010.1116

    CrossRef Google Scholar

    [40] Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B 6, 4370-4379 (1972). doi: 10.1103/PhysRevB.6.4370

    CrossRef Google Scholar

    [41] Palik E D. Handbook of Optical Constants of Solids (Academic, San Diego, America, 1998).

    Google Scholar

    [42] Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93, 137404 (2004). doi: 10.1103/PhysRevLett.93.137404

    CrossRef Google Scholar

    [43] Fang Z Y, Lin C F, Ma R M, Huang S, Zhu X. Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4, 75-82 (2010). doi: 10.1021/nn900729n

    CrossRef Google Scholar

    [44] Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J et al. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11, 1676-1680 (2011). doi: 10.1021/nl200179y

    CrossRef Google Scholar

    [45] Gurevich V S, Libenson M N. Surface polaritons propagation along micropipettes. Ultramicroscopy 57, 277-281 (1995). doi: 10.1016/0304-3991(94)00152-D

    CrossRef Google Scholar

    [46] Babadjanyan A J, Margaryan N L, Nerkararyan K V. Superfocusing of surface polaritons in the conical structure. J Appl Phys 87, 3785 (2000). doi: 10.1063/1.372414

    CrossRef Google Scholar

    [47] Zhang W D, Huang L G, Wei K Y, Li P, Jiang B Q et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt Express 24, 10376-10384 (2016). doi: 10.1364/OE.24.010376

    CrossRef Google Scholar

    [48] Novotny L, Hafner C. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 50, 4094-4106 (1994). doi: 10.1103/PhysRevE.50.4094

    CrossRef Google Scholar

    [49] Gramotnev D K, Vogel M W, Stockman M I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J Appl Phys 104, 034311 (2008). doi: 10.1063/1.2963699

    CrossRef Google Scholar

    [50] Issa N A, Guckenberger R. Optical nanofocusing on tapered metallic waveguides. Plasmonics 2, 31-37 (2007). doi: 10.1007/s11468-006-9022-7

    CrossRef Google Scholar

  • Supplementary information for Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(9613) PDF downloads(3779) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint