Wang Y Q, Ma X L, Li X, Pu M B, Luo X G. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron Adv 1, 180013 (2018). doi: 10.29026/oea.2018.180013
Citation: Wang Y Q, Ma X L, Li X, Pu M B, Luo X G. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron Adv 1, 180013 (2018). doi: 10.29026/oea.2018.180013

Original Article Open Access

Perfect electromagnetic and sound absorption via subwavelength holes array

More Information
  • Broadband sound absorption at low frequency is notoriously difficult because the thickness of the absorber should be proportional to the working wavelength. Here we report an acoustic metasurface absorber following the recent theory developed for electromagnetics. We first show that there is an intrinsic analogy between the impedance description of sound and electromagnetic metasurfaces. Subsequently, we demonstrated that the classic Salisbury and Jaumann absorbers can be realized for acoustic applications with the aid of micro-perforated plates. Finally, the concept of coherent perfect absorption is introduced to achieve ultrathin and ultra-broadband sound absorbers. We anticipate that the approach proposed here can provide helpful guidance for the design of future acoustic and electromagnetic devices.
  • 加载中
  • [1] Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section 2nd ed (SciTech Publishing, Raleigh, North Carolina, 2004).

    Google Scholar

    [2] Hao J M, Wang J, Liu X L, Padilla W J, Zhou L et al. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96, 251104 (2010). doi: 10.1063/1.3442904

    CrossRef Google Scholar

    [3] Feng Q, Pu M B, Hu C G, Luo X G. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett 37, 2133-2135 (2012). doi: 10.1364/OL.37.002133

    CrossRef Google Scholar

    [4] Mei J, Ma G C, Yang M, Yang Z Y, Wen W J et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat Commun 3, 756 (2012). doi: 10.1038/ncomms1758

    CrossRef Google Scholar

    [5] Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce J M et al. Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci Rep 4, 4901 (2014).

    Google Scholar

    [6] Song M W, Yu H L, Hu C G, Pu M B, Zhang Z J et al. Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt Express 21, 32207-32216 (2013). doi: 10.1364/OE.21.032207

    CrossRef Google Scholar

    [7] Cui Y X, He Y R, Jin Y, Ding F, Yang L et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev 8, 495-520 (2014). doi: 10.1002/lpor.v8.4

    CrossRef Google Scholar

    [8] Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [9] de Rosny J, Fink M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys Rev Lett 89, 124301 (2002). doi: 10.1103/PhysRevLett.89.124301

    CrossRef Google Scholar

    [10] Lerosey G, de Rosny J, Tourin A, Fink M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120-1122 (2007). doi: 10.1126/science.1134824

    CrossRef Google Scholar

    [11] Chen L W, Zhou Y, Wu M X, Hong M H. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv 1, 170001 (2018).

    Google Scholar

    [12] Qin F, Hong M H. Breaking the diffraction limit in far field by planar metalens. Sci China Phys Mech Astron 60, 044231 (2017). doi: 10.1007/s11433-017-9005-8

    CrossRef Google Scholar

    [13] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Express 14, 8247-8256 (2006).

    Google Scholar

    [14] Li J, Fok L, Yin X B, Bartal G, Zhang X. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 8, 931-934 (2009). doi: 10.1038/nmat2561

    CrossRef Google Scholar

    [15] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [16] Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139-150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [17] Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P. Acoustic metasurface with hybrid resonances. Nat Mater 13, 873-878 (2014). doi: 10.1038/nmat3994

    CrossRef Google Scholar

    [18] Luo X G. Subwavelength optical engineering with metasurface waves. Adv Opt Mater 6, 1701201 (2018). doi: 10.1002/adom.201701201

    CrossRef Google Scholar

    [19] Pu M B, Feng Q, Wang M, Hu C G, Huang C et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt Express 20, 2246-2254 (2012). doi: 10.1364/OE.20.002246

    CrossRef Google Scholar

    [20] Li S C, Luo J, Anwar S, Li S, Lu W X et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Phys Rev B 91, 220301(R) (2015). doi: 10.1103/PhysRevB.91.220301

    CrossRef Google Scholar

    [21] Pu M B, Hu C G, Huang C, Wang C T, Zhao Z Y et al. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt Express 21, 992-1001 (2013). doi: 10.1364/OE.21.000992

    CrossRef Google Scholar

    [22] Maa D-Y. Potential of microperforated panel absorber. J Acoust Soc Am 104, 2861-2866 (1998). doi: 10.1121/1.423870

    CrossRef Google Scholar

    [23] Herdtle T, Bolton J S, Kim N N, Alexander J H, Gerdes R W. Transfer impedance of microperforated materials with tapered holes. J Acoust Soc Am 134, 4752 (2013). doi: 10.1121/1.4824968

    CrossRef Google Scholar

    [24] Qian Y J, Kong D Y, Liu S M, Sun S M, Zhao Z. Investigation on micro-perforated panel absorber with ultra-micro perforations. Appl Acoust 74, 931-935 (2013). doi: 10.1016/j.apacoust.2013.01.009

    CrossRef Google Scholar

    [25] Chambers B. Optimum design of a salisbury screen radar absorber. Electron Lett 30, 1353-1354 (1994). doi: 10.1049/el:19940896

    CrossRef Google Scholar

    [26] Knott E F, Langseth K. Performance degradation of Jaumann absorbers due to curvature. IEEE Trans Antennas Propag 28, 137-139 (1980). doi: 10.1109/TAP.1980.1142278

    CrossRef Google Scholar

    [27] Duan Y T, Luo J, Wang G H, Hang Z H, Hou B et al. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci Rep 5, 12139 (2015). doi: 10.1038/srep12139

    CrossRef Google Scholar

    [28] Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat Mater 14, 1013-1019 (2015). doi: 10.1038/nmat4393

    CrossRef Google Scholar

    [29] Smith F C. Design principles of broadband adaptive Salisbury screen absorber. Electron Lett 38, 1052-1054 (2002). doi: 10.1049/el:20020699

    CrossRef Google Scholar

    [30] Munk B A, Munk P, Pryor J. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Trans Antennas Propag 55, 186-193 (2007). doi: 10.1109/TAP.2006.888395

    CrossRef Google Scholar

    [31] Pu M B, Chen P, Wang Y Q, Zhao Z Y, Wang C T et al. Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt Express 21, 11618-11627 (2013). doi: 10.1364/OE.21.011618

    CrossRef Google Scholar

    [32] Akselrod G M, Huang J N, Hoang T B, Bowen P T, Su L et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater 27, 8028-8034 (2015). doi: 10.1002/adma.201503281

    CrossRef Google Scholar

    [33] Chong Y D, Ge L, Cao H, Stone A D. Coherent perfect absorbers: time-reversed lasers. Phys Rev Lett 105, 053901 (2010). doi: 10.1103/PhysRevLett.105.053901

    CrossRef Google Scholar

    [34] Pu M B, Feng Q, Hu C G, Luo X G. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7, 733-738 (2012). doi: 10.1007/s11468-012-9365-1

    CrossRef Google Scholar

    [35] Li S C, Duan Q, Li S, Yin Q, Lu W X et al. Perfect electromagnetic absorption at one-atom-thick scale. Appl Phys Lett 107, 181112 (2015). doi: 10.1063/1.4935427

    CrossRef Google Scholar

    [36] Papaioannou M, Plum E, Valente J, Rogers E T F, Zheludev N I. Two-dimensional control of light with light on metasurfaces. Light Sci Appl 5, e16070 (2016). doi: 10.1038/lsa.2016.70

    CrossRef Google Scholar

    [37] Li X, Pu M B, Wang Y Q, Ma X L, Li Y et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials. Adv Opt Mater 4, 659-663 (2016). doi: 10.1002/adom.v4.5

    CrossRef Google Scholar

    [38] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag 48, 1230-1234 (2000). doi: 10.1109/8.884491

    CrossRef Google Scholar

    [39] Wang D C, Zhang L C, Gu Y H, Mehmood M Q, Gong Y D et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep 5, 15020 (2015). doi: 10.1038/srep15020

    CrossRef Google Scholar

    [40] Wan W J, Chong Y D, Ge L, Noh H, Stone A D et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889-892 (2011). doi: 10.1126/science.1200735

    CrossRef Google Scholar

    [41] Wei P J, Croenne C, Chu S T, Li J. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl Phys Lett 104, 121902 (2014). doi: 10.1063/1.4869462

    CrossRef Google Scholar

    [42] Zhang J F, MacDonald K F, Zheludev N I. Controlling light-with-light without nonlinearity. Light Sci Appl 1, e18 (2012). doi: 10.1038/lsa.2012.18

    CrossRef Google Scholar

    [43] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667-669 (1998). doi: 10.1038/35570

    CrossRef Google Scholar

    [44] Munk B A. Frequency Selective Surfaces: Theory and Design (Wiley, New York, 2000).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(12836) PDF downloads(3426) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint