Broadband sound absorption at low frequency is notoriously difficult because the thickness of the absorber should be proportional to the working wavelength. Here we report an acoustic metasurface absorber following the recent theory developed for electromagnetics. We first show that there is an intrinsic analogy between the impedance description of sound and electromagnetic metasurfaces. Subsequently, we demonstrated that the classic Salisbury and Jaumann absorbers can be realized for acoustic applications with the aid of micro-perforated plates. Finally, the concept of coherent perfect absorption is introduced to achieve ultrathin and ultra-broadband sound absorbers. We anticipate that the approach proposed here can provide helpful guidance for the design of future acoustic and electromagnetic devices.
Home > Journal Home > Opto-Electronic Advances
Opto-Electronic Advances
ISSN: 2096-4579
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
Perfect electromagnetic and sound absorption via subwavelength holes array
Author Affiliations

First published at:Nov 01, 2018
Abstract
References
1 Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section 2nd ed (SciTech Publishing, Raleigh, North Carolina, 2004).
2 Hao J M, Wang J, Liu X L, Padilla W J, Zhou L et al. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett96, 251104 (2010). DOI:10.1063/1.3442904
3 Feng Q, Pu M B, Hu C G, Luo X G. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett37, 2133-2135 (2012). DOI:10.1364/OL.37.002133
4 Mei J, Ma G C, Yang M, Yang Z Y, Wen W J et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat Commun3, 756 (2012). DOI:10.1038/ncomms1758
6 Song M W, Yu H L, Hu C G, Pu M B, Zhang Z J et al. Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt Express21, 32207-32216 (2013). DOI:10.1364/OE.21.032207
7 Cui Y X, He Y R, Jin Y, Ding F, Yang L et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev8, 495-520 (2014). DOI:10.1002/lpor.v8.4
8 Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron58, 594201 (2015). DOI:10.1007/s11433-015-5688-1
9 de Rosny J, Fink M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys Rev Lett89, 124301 (2002). DOI:10.1103/PhysRevLett.89.124301
10 Lerosey G, de Rosny J, Tourin A, Fink M. Focusing beyond the diffraction limit with far-field time reversal. Science315, 1120-1122 (2007). DOI:10.1126/science.1134824
11 Chen L W, Zhou Y, Wu M X, Hong M H. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv1, 170001 (2018).
12 Qin F, Hong M H. Breaking the diffraction limit in far field by planar metalens. Sci China Phys Mech Astron60, 044231 (2017). DOI:10.1007/s11433-017-9005-8
13 Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Express14, 8247-8256 (2006).
14 Li J, Fok L, Yin X B, Bartal G, Zhang X. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater8, 931-934 (2009). DOI:10.1038/nmat2561
15 Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science339, 1232009 (2013). DOI:10.1126/science.1232009
16 Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater13, 139-150 (2014). DOI:10.1038/nmat3839
17 Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P. Acoustic metasurface with hybrid resonances. Nat Mater13, 873-878 (2014). DOI:10.1038/nmat3994
18 Luo X G. Subwavelength optical engineering with metasurface waves. Adv Opt Mater6, 1701201 (2018). DOI:10.1002/adom.201701201
19 Pu M B, Feng Q, Wang M, Hu C G, Huang C et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt Express20, 2246-2254 (2012). DOI:10.1364/OE.20.002246
20 Li S C, Luo J, Anwar S, Li S, Lu W X et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Phys Rev B91, 220301(R) (2015). DOI:10.1103/PhysRevB.91.220301
21 Pu M B, Hu C G, Huang C, Wang C T, Zhao Z Y et al. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt Express21, 992-1001 (2013). DOI:10.1364/OE.21.000992
22 Maa D-Y. Potential of microperforated panel absorber. J Acoust Soc Am104, 2861-2866 (1998). DOI:10.1121/1.423870
23 Herdtle T, Bolton J S, Kim N N, Alexander J H, Gerdes R W. Transfer impedance of microperforated materials with tapered holes. J Acoust Soc Am134, 4752 (2013). DOI:10.1121/1.4824968
24 Qian Y J, Kong D Y, Liu S M, Sun S M, Zhao Z. Investigation on micro-perforated panel absorber with ultra-micro perforations. Appl Acoust74, 931-935 (2013). DOI:10.1016/j.apacoust.2013.01.009
25 Chambers B. Optimum design of a salisbury screen radar absorber. Electron Lett30, 1353-1354 (1994). DOI:10.1049/el:19940896
26 Knott E F, Langseth K. Performance degradation of Jaumann absorbers due to curvature. IEEE Trans Antennas Propag28, 137-139 (1980). DOI:10.1109/TAP.1980.1142278
27 Duan Y T, Luo J, Wang G H, Hang Z H, Hou B et al. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci Rep5, 12139 (2015). DOI:10.1038/srep12139
28 Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat Mater14, 1013-1019 (2015). DOI:10.1038/nmat4393
29 Smith F C. Design principles of broadband adaptive Salisbury screen absorber. Electron Lett38, 1052-1054 (2002). DOI:10.1049/el:20020699
30 Munk B A, Munk P, Pryor J. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Trans Antennas Propag55, 186-193 (2007). DOI:10.1109/TAP.2006.888395
31 Pu M B, Chen P, Wang Y Q, Zhao Z Y, Wang C T et al. Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt Express21, 11618-11627 (2013). DOI:10.1364/OE.21.011618
32 Akselrod G M, Huang J N, Hoang T B, Bowen P T, Su L et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater27, 8028-8034 (2015). DOI:10.1002/adma.201503281
33 Chong Y D, Ge L, Cao H, Stone A D. Coherent perfect absorbers: time-reversed lasers. Phys Rev Lett105, 053901 (2010). DOI:10.1103/PhysRevLett.105.053901
34 Pu M B, Feng Q, Hu C G, Luo X G. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics7, 733-738 (2012). DOI:10.1007/s11468-012-9365-1
35 Li S C, Duan Q, Li S, Yin Q, Lu W X et al. Perfect electromagnetic absorption at one-atom-thick scale. Appl Phys Lett107, 181112 (2015). DOI:10.1063/1.4935427
36 Papaioannou M, Plum E, Valente J, Rogers E T F, Zheludev N I. Two-dimensional control of light with light on metasurfaces. Light Sci Appl5, e16070 (2016). DOI:10.1038/lsa.2016.70
37 Li X, Pu M B, Wang Y Q, Ma X L, Li Y et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials. Adv Opt Mater4, 659-663 (2016). DOI:10.1002/adom.v4.5
38 Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag48, 1230-1234 (2000). DOI:10.1109/8.884491
39 Wang D C, Zhang L C, Gu Y H, Mehmood M Q, Gong Y D et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep5, 15020 (2015). DOI:10.1038/srep15020
40 Wan W J, Chong Y D, Ge L, Noh H, Stone A D et al. Time-reversed lasing and interferometric control of absorption. Science331, 889-892 (2011). DOI:10.1126/science.1200735
41 Wei P J, Croenne C, Chu S T, Li J. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl Phys Lett104, 121902 (2014). DOI:10.1063/1.4869462
42 Zhang J F, MacDonald K F, Zheludev N I. Controlling light-with-light without nonlinearity. Light Sci Appl1, e18 (2012). DOI:10.1038/lsa.2012.18
43 Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature391, 667-669 (1998). DOI:10.1038/35570
44 Munk B A. Frequency Selective Surfaces: Theory and Design (Wiley, New York, 2000).
Keywords:
Funds:
973 Program of China under con-tract No. 2013CBA01700 and the National Natural Science Foundation of China under contract No. 61622509 and 61575203
Export Citations as:
For
Get Citation:
Wang Y Q, Ma X L, Li X, Pu M B, Luo X G. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron Adv 1, 180013 (2018).
Previous: An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory
Issue Cover
Cited By(14)
Engineering Optics 2.0, 2019
Engineering Optics 2.0, 2019
Engineering Optics 2.0, 2019
APL Photonics, 2019
Catenary Optics, 2019
Advanced Engineering, 2019
Applied Physics, 2019
Applied Optics, 2019
Optical Materials Express, 2020
Advanced Optical materials, 2020
Related Articles