A novel spatial double-pulse laser ablation scheme is investigated to enhance the processing quality and efficiency for nanosecond laser ablation of silicon substrate. During the double-pulse laser ablation, two splitted laser beams simultaneously irradiate on silicon surface at a tunable gap. The ablation quality and efficiency are evaluated by both scanning electron microscope and laser scanning confocal microscope. As tuning the gap distance, the ablation can be significantly enhanced if the spatial interaction between the two splitted laser pulses is optimized. The underlying physical mechanism for the interacting spatial double-pulse enhancement effect is attributed to the redistribution of the integrated energy field, corresponding to the temperature field. This new method has great potential applications in laser micromachining of functional devices at higher processing quality and faster speed.
Home > Journal Home > Opto-Electronic Advances
Opto-Electronic Advances
ISSN: 2096-4579
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
Enhancement of laser ablation via interacting spatial double-pulse effect
Author Affiliations

First published at:Sep 30, 2018
Abstract
References
1 Choudhury I A, Shirley S. Laser cutting of polymeric materials: an experimental investigation. Opt Laser Technol42, 503-508 (2010). DOI:10.1016/j.optlastec.2009.09.006
2 Ancona A, Döring S, Jauregui C, Röser F, Limpert J et al. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Opt Lett34, 3304-3306 (2009). DOI:10.1364/OL.34.003304
3 Miyamoto I, Cvecek K, Okamoto Y, Schmidt M. Internal modification of glass by ultrashort laser pulse and its application to microwelding. Appl Phys A114, 187-208 (2014). DOI:10.1007/s00339-013-8115-3
4 Lee Y J, Kuo H C, Lu T C, Wang S C, Ng K W et al. Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned sapphire substrate with V-shaped pits roughening surfaces. J Lightwave Technol26, 1455-1463 (2008). DOI:10.1109/JLT.2008.922151
5 Hyypio D. Mitigation of bearing electro-erosion of inverter-fed motors through passive common-mode voltage suppression. IEEE Trans Ind Appl41, 576-583 (2005). DOI:10.1109/TIA.2005.844373
6 Meng H Y, Liao J H, Zhou Y H, Zhang Q M. Laser micro-processing of cardiovascular stent with fiber laser cutting system. Opt Laser Technol41, 300-302 (2009). DOI:10.1016/j.optlastec.2008.06.001
7 Watanabe W, Li Y, Itoh K. Ultrafast laser micro-processing of transparent material. Opt Laser Technol78, 52-61 (2016). DOI:10.1016/j.optlastec.2015.09.023
8 Rizvi N H, Apte P. Developments in laser micro-machining techniques. J Mater Process Technol127, 206-210 (2002). DOI:10.1016/S0924-0136(02)00143-7
10 Xu K C, Zhang C T, Zhou R, Ji R, Hong M H. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt Express24, 10352-10358 (2016). DOI:10.1364/OE.24.010352
11 Mahdieh M H, Nikbakht M, Eghlimi Moghadam Z, Sobhani M. Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water. Appl Surf Sci256, 1778-1783 (2010). DOI:10.1016/j.apsusc.2009.10.003
12 König J, Nolte S, Tünnermann A. Plasma evolution during metal ablation with ultrashort laser pulses. Opt Express13, 10597-10607 (2005). DOI:10.1364/OPEX.13.010597
13 Crawford T H R, Borowiec A, Haugen H K. Femtosecond laser micromachining of grooves in silicon with 800 nm pulses. Appl Phys A80, 1717-1724 (2005). DOI:10.1007/s00339-004-2941-2
14 Bulgakova N M, Bulgakov A V. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl Phys A73, 199-208 (2001). DOI:10.1007/s003390000686
15 Zhou M, Zhang Y K, Cai L. Laser shock forming on coated metal sheets characterized by ultrahigh-strain-rate plastic deformation. J Appl Phys91, 5501-5503 (2002). DOI:10.1063/1.1459624
16 Gerhard C, Roux S, Brückner S, Wieneke S, Viöl W. Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminum. Appl Phys A108, 107-112 (2012). DOI:10.1007/s00339-012-6942-2
17 Kajita S, Ohno N, Takamura S, Sakaguchi W, Nishijima D. Plasma-assisted laser ablation of tungsten: reduction in ablation power threshold due to bursting of holes/bubbles. Appl Phys Lett91, 261501 (2007). DOI:10.1063/1.2824873
18 Babushok V I, DeLucia Jr F C, Gottfried J L, Munson C A, Miziolek A W. Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim Acta Part B: At Spectrosc61, 999-1014 (2006). DOI:10.1016/j.sab.2006.09.003
19 Jansen E D, Asshauer T, Frenz M, Motamedi M, Delacrétaz G et al. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation. Lasers Surg Med18, 278-293 (1996). DOI:10.1002/(ISSN)1096-9101
Keywords:
Funds:
National Natural Science Foundation of China under Grant (No. 61605162); Singapore Maritime Institute under the research project Grant (No. SMI-2015-OF-10); Natural Science Foundation of Fujian Province of China under Grant (No. 2017J05106); and Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian
Export Citations as:
For
Get Citation:
Zhou R, Lin S D, Ding Y, Yang H, Ong Y K K et al. Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1, 180014 (2018).
Issue Cover
Cited By(18)
APL Photonics, 2019
Opto-Electronic Advances, 2019
Optics & Laser Technology, 2019
Optics & Laser Technology,
Journal of Laser Applications, 2020
Laser & Photonics Reviews, 2020
Journal of Applied Physics, 2020
Journal of Applied Physics, 2020
Sensors and Actuators A: Physical, 2020
Related Articles