Citation: | Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). doi: 10.29026/oea.2018.180021 |
[1] | Maiman T H. Stimulated optical radiation in ruby. Nature 187, 493-494 (1960). doi: 10.1038/187493a0 |
[2] | Boyd R W. Nonlinear Optics 2nd ed (Academic Press, Rochester, NY, USA, 2003). |
[3] | Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: A paradigm shift in nonlinear optics. Mater Today 21, 8-21 (2018). doi: 10.1016/j.mattod.2017.06.007 |
[4] | Chen L W, Zheng X R, Du Z R, Jia B H, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale 7, 14982-14988 (2015). doi: 10.1039/C5NR03304G |
[5] | Kauranen M, Zayats A V. Nonlinear plasmonics. Nat Photonics 6, 737-748 (2012). doi: 10.1038/nphoton.2012.244 |
[6] | Wolf O, Campione S, Benz A, Ravikumar A P, Liu S et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nat Commun 6, 7667 (2015). doi: 10.1038/ncomms8667 |
[7] | Klein M W, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science 313, 502-504 (2006). doi: 10.1126/science.1129198 |
[8] | Aouani H, Navarro-Cia M, Rahmani M, Sidiropoulos T P H, Hong M H et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett 12, 4997-5002 (2012). doi: 10.1021/nl302665m |
[9] | Gennaro S D, Rahmani M, Giannini V, Aouani H, Sidiropoulos T P H et al. The interplay of symmetry and scattering phase in second harmonic generation from gold nanoantennas. Nano Lett 16, 5278-5285 (2016). doi: 10.1021/acs.nanolett.6b02485 |
[10] | Niesler F B P, Feth N, Linden S, Niegemann J, Gieseler J et al. Second-harmonic generation from split-ring resonators on a GaAs substrate. Opt Lett 34, 1997-1999 (2009). doi: 10.1364/OL.34.001997 |
[11] | Panoiu N C, Sha W E I, Lei D Y, Li G C. Nonlinear optics in plasmonic nanostructures. J Opt 20, 083001 (2018). doi: 10.1088/2040-8986/aac8ed |
[12] | Midtvedt D, Isacsson A, Croy A. Nonlinear phononics using atomically thin membranes. Nat Commun 5, 4838 (2014). doi: 10.1038/ncomms5838 |
[13] | Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65-69 (2014). doi: 10.1038/nature13455 |
[14] | Liu H Z, Guo C, Vampa G, Zhang J L, Sarmiento T et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat Phys 14, 1006-101 (2018). doi: 10.1038/s41567-018-0233-6 |
[15] | Yang Y M, Wang W Y, Boulesbaa A, Kravchenko I I, Briggs D P et al. Nonlinear fano-resonant dielectric metasurfaces. Nano Lett 15, 7388-7393 (2015). doi: 10.1021/acs.nanolett.5b02802 |
[16] | Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[17] | Hong M H. Metasurface wave in planar nano-photonics. Sci Bull 61, 112-113 (2016). doi: 10.1007/s11434-015-0948-z |
[18] | Giannini V, Fernández-Domínguez A I, Heck S C, Maier S A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111, 3888-3912 (2011). doi: 10.1021/cr1002672 |
[19] | Metzger B, Hentschel M, Schumacher T, Lippitz M, Ye X C et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett 14, 2867-2872 (2014). doi: 10.1021/nl500913t |
[20] | Aouani H, Rahmani M, Navarro-Cía M, Maier S A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat Nanotechnol 9, 290-294 (2014). doi: 10.1038/nnano.2014.27 |
[21] | Metzger B, Gui L L, Fuchs J, Floess D, Hentschel M et al. Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength. Nano Lett 15, 3917-3922 (2015). doi: 10.1021/acs.nanolett.5b00747 |
[22] | Butet J, Brevet P F, Martin O J F. Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications. ACS Nano 9, 10545-10562 (2015). doi: 10.1021/acsnano.5b04373 |
[23] | Rahmani M, Shorokhov A S, Hopkins B, Miroshnichenko A E, Shcherbakov M R et al. Nonlinear symmetry breaking in symmetric oligomers. ACS Photonics 4, 454-461 (2017). doi: 10.1021/acsphotonics.6b00902 |
[24] | Celebrano M, Wu X F, Baselli M, Gro mann S, Biagioni P et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol 10, 412-417 (2015). doi: 10.1038/nnano.2015.69 |
[25] | Du Z R, Chen L W, Kao T S, Wu M X, Hong M H. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. Beilstein J Nanotechnol 6, 1199-1204 (2015). doi: 10.3762/bjnano.6.122 |
[26] | Maier S A. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, New York, 2007). |
[27] | Rahmani M, Tahmasebi T, Lin Y, Lukiyanchuk B, Liew T Y F et al. Influence of plasmon destructive interferences on optical properties of gold planar quadrumers. Nanotechnology 22, 245204 (2011). doi: 10.1088/0957-4484/22/24/245204 |
[28] | Lu F F, Zhang W D, Huang L G, Liang S H, Mao D et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010 (2018). |
[29] | Chen L W, Zhou Y, Wu M X, Hong M H. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv 1, 170001 (2018). |
[30] | Rahmani M, Luk'yanchuk B, Hong M H. Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7, 329-349 (2013). |
[31] | Zhang W Q, Rahmani M, Niu W X, Ravaine S, Hong M H et al. Tuning interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced raman scattering. Sci Rep 5, 8382 (2015). doi: 10.1038/srep08382 |
[32] | Della Picca F, Berte R, Rahmani M, Albella P, Bujjamer J M et al. Tailored hypersound generation in single plasmonic nanoantennas. Nano Lett 16, 1428-1434 (2016). doi: 10.1021/acs.nanolett.5b04991 |
[33] | Kuznetsov A I, Miroshnichenko A E, Fu Y H, Viswanathan V, Rahmani M et al. Split-ball resonator as a three-dimensional analogue of planar split-rings. Nat Commun 5, 3104 (2014). doi: 10.1038/ncomms4104 |
[34] | Hanke T, Cesar J, Knittel V, Trügler A, Hohenester U et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett 12, 992-996 (2012). doi: 10.1021/nl2041047 |
[35] | Fernandez-Garcia R, Rahmani M, Hong M H, Maier S A, Sonnefraud Y. Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement. Opt Express 21, 12552-12561 (2013). doi: 10.1364/OE.21.012552 |
[36] | Yoxall E, Navarro-Cía M, Rahmani M, Maier S A, Phillips C C. Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers. Appl Phys Lett 103, 213110 (2013). doi: 10.1063/1.4832859 |
[37] | Geraci G, Hopkins B, Miroshnichenko A E, Erkihun B, Neshev D N et al. Polarisation-independent enhanced scattering by tailoring asymmetric plasmonic systems. Nanoscale 8, 6021-6027 (2016). doi: 10.1039/C6NR00029K |
[38] | Rifat A A, Rahmani M, Xu L, Miroshnichenko A E. Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor. Materials 11, 1091 (2018). doi: 10.3390/ma11071091 |
[39] | Franken P, Hill A E, Peters C W, Weinreich G. Generation of optical harmonics. Phys Rev Lett 7, 118-119 (1961). doi: 10.1103/PhysRevLett.7.118 |
[40] | Segovia P, Marino G, Krasavin A V, Olivier N, Wurtz G A et al. Hyperbolic metamaterial antenna for second-harmonic generation tomography. Opt Express 23, 30730-30738 (2015). doi: 10.1364/OE.23.030730 |
[41] | Marino G, Segovia P, Krasavin A V, Ginzburg P, Olivier N et al. Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab. Laser Photonics Rev 12, 1700189 (2018). |
[42] | Wang P, Krasavin A V, Nasir M E, Dickson W, Zayats A V. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat Nanotechnol 13, 159-164 (2018). doi: 10.1038/s41565-017-0017-7 |
[43] | Dickson W, Beckett S, McClatchey C, Murphy A, O'Connor D et al. Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials. Adv Mater 27, 5974-5980 (2015). doi: 10.1002/adma.201501325 |
[44] | Shorokhov A S, Melik-Gaykazyan E V, Smirnova D A, Hopkins B, Chong K E et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances. Nano Lett 16, 4857-4861 (2016). doi: 10.1021/acs.nanolett.6b01249 |
[45] | Grinblat G, Li Y, Nielsen M P, Oulton R F, Maier S A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett 16, 4635-4640 (2016). doi: 10.1021/acs.nanolett.6b01958 |
[46] | Nielsen M P, Lafone L, Rakovich A, Sidiropoulos T P H, Rahmani M et al. Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform. Nano Lett 16, 1410-1414 (2016). doi: 10.1021/acs.nanolett.5b04931 |
[47] | Caldarola M, Albella P, Cortés E, Rahmani M, Roschuk T et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat Commun 6, 7915 (2015). doi: 10.1038/ncomms8915 |
[48] | Ikeda K, Shen Y M, Fainman Y. Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices. Opt Express 15, 17761-17771 (2007). doi: 10.1364/OE.15.017761 |
[49] | Gai X, Choi D Y, Luther-Davies B. Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 μm for ultra-fast nonlinear signal processing. Opt Express 22, 9948-9958 (2014). doi: 10.1364/OE.22.009948 |
[50] | Fauchet P M, Hulin D. Ultrafast carrier relaxation in hydrogenated amorphous silicon. J Opt Sci Am B 6, 1024-1029 (1989). doi: 10.1364/JOSAB.6.001024 |
[51] | Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J of Quantum Electron 26, 760-769 (1990). doi: 10.1109/3.53394 |
[52] | Boyd G D, Patel C K N. Enhancement of optical second‐harmonic generation (SHG) by reflection phase matching in Zns and GaAs. Appl Phys Lett 8, 313-315 (1966). doi: 10.1063/1.1754454 |
[53] | Carletti L, Locatelli A, Stepanenko O, Leo G, De Angelis C. Enhanced second-harmonic generation from magnetic resonance in ALGaAs nanoantennas. Opt Express 23, 26544-26550 (2015). doi: 10.1364/OE.23.026544 |
[54] | Cambiasso J, Grinblat G, Li Y, Rakovich A, Cortés E et al. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett 17, 1219-1225 (2017). doi: 10.1021/acs.nanolett.6b05026 |
[55] | Person S, Jain M, Lapin Z, Sáenz J J, Wicks G et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett 13, 1806-1809 (2013). doi: 10.1021/nl4005018 |
[56] | Gili V F, Carletti L, Locatelli A, Rocco D, Finazzi M et al. Monolithic ALGaAs second-harmonic nanoantennas. Opt Express 24, 15965-15971 (2016). doi: 10.1364/OE.24.015965 |
[57] | Liu S, Sinclair M B, Saravi S, Keeler G A, Yang Y M et al. Resonantly enhanced second-harmonic generation using Ⅲ-Ⅴ semiconductor all-dielectric metasurfaces. Nano Lett 16, 5426-5432 (2016). doi: 10.1021/acs.nanolett.6b01816 |
[58] | Camacho-Morales R, Rahmani M, Kruk S, Wang L, Xu L et al. Nonlinear generation of vector beams from ALGaAs nanoantennas. Nano Lett 16, 7191-7197 (2016). doi: 10.1021/acs.nanolett.6b03525 |
[59] | Shcherbakov M R, Shorokhov A S, Neshev D N, Hopkins B, Staude I et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photonics 2, 578-582 (2015). doi: 10.1021/acsphotonics.5b00065 |
[60] | Della Valle G, Hopkins B, Ganzer L, Stoll T, Rahmani M et al. Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics. ACS Photonics 4, 2129-2136 (2017). doi: 10.1021/acsphotonics.7b00544 |
[61] | Chen S M, Rahmani M, Li K F, Miroshnichenko A, Zentgraf T et al. Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces. ACS Photonics 5, 1671-1675 (2018). doi: 10.1021/acsphotonics.7b01423 |
[62] | Nemati A, Wang Q, Hong M H, Teng J H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018). |
[63] | Grinblat G, Li Y, Nielsen M P, Oulton R F, Maier S A. Degenerate four-wave mixing in a multiresonant germanium nanodisk. ACS Photonics 4, 2144-2149 (2017). doi: 10.1021/acsphotonics.7b00631 |
[64] | Chen L M, Jiang X F, Guo Z M, Zhu H, Kao T S et al. Tuning optical nonlinearity of laser-ablation-synthesized silicon nanoparticles via doping concentration. J Nanomater 2014, 652829 (2014). |
[65] | Wang L, Kruk S, Xu L, Rahmani M, Smirnova D et al. Shaping the third-harmonic radiation from silicon nanodimers. Nanoscale 9, 2201-2206 (2017). doi: 10.1039/C6NR09702B |
[66] | Makarov S V, Petrov M I, Zywietz U, Milichko V, Zuev D et al. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett 17, 3047-3053 (2017). doi: 10.1021/acs.nanolett.7b00392 |
[67] | Melik-Gaykazyan E V, Kruk S S, Camacho-Morales R, Xu L, Rahmani M et al. Selective third-harmonic generation by structured light in mie-resonant nanoparticles. ACS Photonics 5, 728-733 (2018). doi: 10.1021/acsphotonics.7b01277 |
[68] | Tong W Y, Gong C, Liu X J, Yuan S, Huang Q Z et al. Enhanced third harmonic generation in a silicon metasurface using trapped mode. Opt Express 24, 19661-19670 (2016). doi: 10.1364/OE.24.019661 |
[69] | Kuznetsov A I, Miroshnichenko A E, Fu Y H, Zhang J B, Luk'yanchuk B. Magnetic light. Sci Rep 2, 492 (2012). doi: 10.1038/srep00492 |
[70] | Smirnova D, Kivshar Y S. Multipolar nonlinear nanophotonics. Optica 3, 1241-1255 (2016). doi: 10.1364/OPTICA.3.001241 |
[71] | Lu B H, Lan H B, Liu H Z. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv 1, 170004 (2018). |
[72] | Shcherbakov M R, Neshev D N, Hopkins B, Shorokhov A S, Staude I et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett 14, 6488-6492 (2014). doi: 10.1021/nl503029j |
[73] | Choi W K, Liew T H, Dawood M K, Smith H I, Thompson C V et al. Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett 8, 3799-3802 (2008). doi: 10.1021/nl802129f |
[74] | Rahmani M, Xu L, Miroshnichenko A E, Komar A, Camacho- Morales R et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv Funct Mater 27, 1700580 (2017). doi: 10.1002/adfm.v27.31 |
[75] | Shcherbakov M R, Vabishchevich P P, Shorokhov A S, Chong K E, Choi D Y et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett 15, 6985-6990 (2015). doi: 10.1021/acs.nanolett.5b02989 |
[76] | Xu L, Rahmani M, Kamali K Z, Lamprianidis A, Ghirardini L et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light: Sci Appl 7, 44 (2018). doi: 10.1038/s41377-018-0051-8 |
[77] | Löchner F J, Fedotova A N, Liu S, Keeler G A, Peake G M et al. Polarization-dependent second harmonic diffraction from resonant gaas metasurfaces. ACS Photonics 5, 1786-1793 (2018). doi: 10.1021/acsphotonics.7b01533 |
[78] | Mie G. Beitr ge zur optik trüber medien, speziell kolloidaler metall sungen. Ann Phys 330, 377-445 (1908). doi: 10.1002/(ISSN)1521-3889 |
[79] | Debye P. Der lichtdruck auf kugeln von beliebigem material. Ann Phys 335, 57-136 (1909). doi: 10.1002/(ISSN)1521-3889 |
[80] | Xu L, Rahmani M, Smirnova D, Zangeneh Kamali K, Zhang G Q et al. Highly-efficient longitudinal second-harmonic generation from doubly-resonant algaas nanoantennas. Photonics 5, 29 (2018). doi: 10.3390/photonics5030029 |
[81] | Liu S, Vabishchevich P P, Vaskin A, Reno J L, Keeler G A et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat Commun 9, 2507 (2018). doi: 10.1038/s41467-018-04944-9 |
[82] | Carletti L, Marino G, Ghirardini L, Gili V F, Rocco D et al. Nonlinear goniometry by second-harmonic generation in algaas nanoantennas. ACS Photonics 5, 4386-4392 (2018). doi: 10.1021/acsphotonics.8b00810 |
[83] | Shcherbakov M R, Liu S, Zubyuk V V, Vaskin A, Vabishchevich P P et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun 8, 17 (2017). doi: 10.1038/s41467-017-00019-3 |
[84] | Aouani H, Navarro-Cía M, Rahmani M, Maier S A. Unveiling the origin of third harmonic generation in hybrid ITO-plasmonic crystals. Adv Opt Mater 3, 1059-1065 (2015). doi: 10.1002/adom.201500112 |
[85] | Linnenbank H, Grynko Y, Förstner J, Linden S. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light: Sci Appl 5, e16013 (2016). doi: 10.1038/lsa.2016.13 |
[86] | Abb M, Albella P, Aizpurua J, Muskens O. All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett 11, 2457-2463 (2011). doi: 10.1021/nl200901w |
[87] | Khurgin J, Tsai W Y, Tsai D P, Sun G. Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics 4, 2871-2880 (2017). doi: 10.1021/acsphotonics.7b00860 |
[88] | Pu M B, Guo Y H, Li X, Ma X L, Luo X G. Revisitation of extraordinary young's interference: From catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198-3204 (2018). doi: 10.1021/acsphotonics.8b00437 |
[89] | Fan W J, Zhang S, Panoiu N C, Abdenour A, Krishna S et al. Second harmonic generation from a nanopatterned isotropic nonlinear material. Nano Lett 6, 1027-1030 (2006). doi: 10.1021/nl0604457 |
[90] | Pu Y, Grange R, Hsieh C L, Psaltis D. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104, 207402 (2010). doi: 10.1103/PhysRevLett.104.207402 |
[91] | Lehr D, Reinhold J, Thiele I, Hartung H, Dietrich K et al. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett 15, 1025-1030 (2015). doi: 10.1021/nl5038819 |
[92] | Shibanuma T, Grinblat G, Albella P, Maier S A. Efficient third harmonic generation from metal-dielectric hybrid nanoantennas. Nano Lett 17, 2647-2651 (2017). doi: 10.1021/acs.nanolett.7b00462 |
[93] | Gili V F, Ghirardini L, Rocco D, Marino G, Favero I et al. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. Beilstein J Nanotechnol 9, 2306-2314 (2018). doi: 10.3762/bjnano.9.215 |
[94] | Decker M, Pertsch T, Staude I. Strong coupling in hybrid metal-dielectric nanoresonators. Philos Trans Roy Soc A: Math, Phys Eng Sci 375, 20160312 (2017). doi: 10.1098/rsta.2016.0312 |
[95] | Guo R, Rusak E, Staude I, Dominguez J, Decker M et al. Multipolar coupling in hybrid metal-dielectric metasurfaces. ACS Photonics 3, 349-353 (2016). doi: 10.1021/acsphotonics.6b00012 |
[96] | Rusak E, Staude I, Decker M, Sautter J, Miroshnichenko A E et al. Hybrid nanoantennas for directional emission enhancement. Appl Phys Lett 105, 221109 (2014). doi: 10.1063/1.4903219 |
[97] | Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nat Photonics 8, 899 (2014). doi: 10.1038/nphoton.2014.271 |
[98] | Zheng X R, Jia B H, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26, 2699-2703 (2014). doi: 10.1002/adma.201304681 |
[99] | Fryett T, Zhan A, Majumdar A. Cavity nonlinear optics with layered materials. Nanophotonics 7, 69 (2017). |
[100] | Dai S, Ma Q, Liu M K, Andersen T, Fei Z et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10, 682-686 (2015). doi: 10.1038/nnano.2015.131 |
[101] | Kumar A, Low T, Fung K H, Avouris P, Fang N X. Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system. Nano Lett 15, 3172-3180 (2015). doi: 10.1021/acs.nanolett.5b01191 |
[102] | Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nat Photonics 7, 948-957 (2013). doi: 10.1038/nphoton.2013.243 |
[103] | Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene. Prog Mater Sci 73, 44-126 (2015). doi: 10.1016/j.pmatsci.2015.02.002 |
[104] | Geissbuehler M, Bonacina L, Shcheslavskiy V, Bocchio N L, Geissbuehler S et al. Nonlinear correlation spectroscopy (NLCS). Nano Lett 12, 1668-1672 (2012). doi: 10.1021/nl300070n |
[105] | DaCosta M V, Doughan S, Han Y, Krull U J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal Chim Acta 832, 1-33 (2014). doi: 10.1016/j.aca.2014.04.030 |
[106] | Makarov S V, Tsypkin A N, Voytova T A, Milichko V A, Mukhin I S et al. Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation. Nanoscale 8, 17809-17814 (2016). doi: 10.1039/C6NR04860A |
[107] | Krasavin A V, Ginzburg P, Wurtz G A, Zayats A V. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat Commun 7, 11497 (2016). doi: 10.1038/ncomms11497 |
[108] | Barz S, Cronenberg G, Zeilinger A, Walther P. Heralded generation of entangled photon pairs. Nat Photonics 4, 553-556 (2010). doi: 10.1038/nphoton.2010.156 |
(a) An illustration of SHG interference in multi-resonant gold nanoantennas. (b) SEM images of the five nanoantennas configuration (CI−CV). Dimensions of the bars are 340 nm×80 nm×40 nm in x, y, and z, respectively, while disks are the same thickness with diameters of 160 nm. The gaps between the disks and the bar are 20 nm for all cases. (c) The measured SHG signals from the five configurations, where the pump and SHG signal are polarized along and perpendicular to the bar, respectively. The colors of various curves correspond to different antennas, shown in (b). Figure reprinted with permission from ref.9, American Chemical Society.
(a) Angled SEM view of metamaterial showing Au nanorods. Inset demonstrates the propagation of fundamental and SHG waves. (b) Far-field reflected SH spectra from a smooth Au surface (red line) and the nanorod metamaterial. Figure reproduced with permission from ref.41, John Wiley and Sons.
(a) Illustration of the THG process for a 100 nm thick germanium nanodisk on glass excited with near-infrared light of frequency ω to produce green emission of frequency 3ω. The inset shows SEM image of a germanium disk. Scale bar is 1 μm. (b) Measured TH power versus pump power at the AM (λlaser=1650 nm, D=875 nm). The straight line is a fit considering the cubic dependence of the emission intensity on the excitation power. A deviation from this trend is observed from 1.5 μW. Figure reprinted with permission from ref.45, American Chemical Society.
(a) Illustration of THG from individual Si nanodisks at optical frequencies. (b) Power dependence and conversion efficiency of the resonant THG process in Si nanodisks. Blue circles denote the THG power dependence upon increasing the power of the pump, while red circles denote the reverse procedure both obtained at λ=1260 nm fundamental wavelength. The inset shows a photographic image of the sample irradiated with the invisible IR beam impinging from the back side of the sample as indicated by the red arrow. The blue point represents the scattered TH signal detected by the camera. Figure reprinted with permission from ref.72, American Chemical Society.
(a) SEM image of the fabricated resonator on mirror configuration. (b) Illustration of the current and field distributions of a resonator on a PEC substrate, respectively. (c) Measured TH power as a function of pump power. Figure reproduced from ref.76.
(a) SEM image of a 200 nm radius disk (scale bar is 200 nm), and a schematic view of the experimental setup for a disk emitting green SH light. (b) Dependence of the average SH power ﹤PSH﹥ on the average excitation power ﹤P﹥ for the ND (corresponding pulse peak power ﹤Ppk﹥ on top axis). The solid line is a fit of the data considering the expected quadratic dependence of ﹤PSH﹥ with ﹤P﹥. Figure reprinted with permission from ref.54, American Chemical Society.
(a) Schematics of a single Monolithic AlGaAs-on-AlOx nanoantenna. (b) Scanning-electron-microscope picture of a part of the array and (c) power curve in Log/Log scale. SHG intensity as a function of the pump intensity for nanoantenna with 193 nm radius. Figure reproduced with permission from ref.56.
(a) Schematics of a single Monolithic AlGaAs-on-AlOx nanoantenna. (b) Scanning-electron-microscope picture of a part of the array and (c) power curve in Log/Log scale. SHG intensity as a function of the pump intensity for nanoantenna with 193 nm radius. Figure reproduced with permission from ref.56.
(a) Steps for fabricating AlGaAs nanoantennas on a glass substrate. (b) Schematic of the single antenna experiment in both forward and backward directions. (c) Experimentally measured SHG radiation patterns depicting the directionality and polarization diagrams of the SH signal in forward and backward directions. Arrows visualize the polarization states. Figure reprinted with permission from ref.58, American Chemical Society.
Measured THG intensity from (a) an isolated ITO particle (left) versus (b) hybridized ITO-Au antenna. Insets show SEM image of an antenna for each case. Figure reproduced from ref.20.