Optical camouflage is a magical capability of animals as first noticed in 1794 by Erasmus Darwin in Zoonomia, but current biomimetic camouflage strategies cannot be readily applied in complex environments involving multispectral and in particular multi-polarization detection. Here we develop a plasmonic approach toward broadband infrared polarimetric crypsis, where the polarized thermal emission near the pseudo-Brewster angle is the main signal source and no existing polarizing camouflage technique has been discovered in nature. Based on all-metallic subwavelength structures, an electrodynamic resistance-reduction mechanism is proposed to avoid the significant polarization-dependent infrared absorption/radiation. It is also found that the structured metal surface presents giant extrinsic anisotropy regarding the phase shift between orthogonal polarization states, which helps to realize ultrahigh-efficiency and tunable polarization conversion in an unprecedented manner. Finally, we note that the catenary optical theory may provide a useful means to explain and predict these unusual performances.
Home > Journal Home > Opto-Electronic Advances
Opto-Electronic Advances
ISSN: 2096-4579
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
All-metallic wide-angle metasurfaces for multifunctional polarization manipulation
Author Affiliations

First published at:Feb 18, 2019
Abstract
References
1. Paniagua-Domínguez R, Yu Y F, Miroshnichenko A E, Krivitsky L A, Fu Y H et al. Generalized Brewster effect in dielectric metasurfaces. Nat Commun 7, 10362 (2016).
2. Alù A, D’Aguanno G, Mattiucci N, Bloemer M J. Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings. Phys Rev Lett 106, 123902 (2011).
3. Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014).
4. Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
5. Pu M B, Li X, Ma X L, Wang Y Q, Zhao Z Y et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015).
6. Tang D L, Wang C T, Zhao Z Y, Wang Y Q, Pu M B et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev 9, 713–719 (2015).
7. Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev 9, 195–213 (2015).
8. Qin F, Ding L, Zhang L, Monticone F, Chum C C et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv 2, e1501168 (2016).
9. Ma Z J, Hanham S M, Albella P, Ng B, Lu H T et al. Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photonics 3, 1010–1018 (2016).
10. Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H et al. Active dielectric metasurface based on phase‐change medium. Laser Photonics Rev 10, 986–994 (2016).
11. Bao Y J, Zu S, Liu W, Zhou L, Zhu X et al. Revealing the spin optics in conic-shaped metasurfaces. Phys Rev B 95, 081406 (2017).
12. Jiang Q, Bao Y J, Lin F, Zhu X, Zhang S et al. Spin‐controlled integrated near‐ and far‐field optical launcher. Adv Funct Mater 28, 1705503 (2018).
13. Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015).
14. Ohman G. The pseudo-brewster angle. IEEE Trans Antennas Propag 25, 903–904 (1977).
15. Azzam R M A. Complex reflection coefficients of p- and s-polarized light at the pseudo-Brewster angle of a dielectric–conductor interface. J Opt Soc Am A 30, 1975–1979 (2013).
16. Liu X L, Tyler T, Starr T, Starr A F, Jokerst N M et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107, 045901 (2011).
17. Worthing A G. Deviation from lambert’s law and polarization of light emitted by incandescent tungsten, tantalum and molybdenum and changes in the optical constants of tungsten with temperature. J Opt Soc Am 13, 635–649 (1926).
18. Pezzaniti J L, Chenault D, Gurton K, Felton M. Detection of obscured targets with IR polarimetric imaging. Proc SPIE, 9072, 90721D (2014).
19. Tyo J S, Goldstein D L, Chenault D B, Shaw J A. Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45, 5453–5469 (2006).
20. Wang K L, Mittleman D M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).
21. Pu M B, Guo Y H, Li X, Ma X L, Luo X G. Revisitation of extraordinary young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018).
22. Luo X G. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 25, 1804680 (2019).
23. Luo X G, Tsai D, Gu M, Hong M H. Subwavelength interference of light on structured surfaces. Adv Opt Photonics 10, 757–842 (2018).
24. Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018).
25. Xie X, Pu M B, Huang Y J, Ma X L, Li X et al. Heat Resisting Metallic Meta‐Skin for Simultaneous Microwave Broadband Scattering and Infrared Invisibility Based on Catenary Optical Field. Adv Mater Technol, 1800612 (2018). https://doi.org/10.1002/admt.201800612
26. CST Microwave Studios. CST-Computer Simulation Technology AG, 2013.
27. Granick S, Zhu Y X, Lee H. Slippery questions about complex fluids flowing past solids. Nat Mater 2, 221–227 (2003).
28. Pu M B, Li X, Guo Y H, Ma X L, Luo X G. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471–31477 (2017).
29. Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y et al. High‐efficiency and wide‐angle beam steering based on catenary optical fields in ultrathin metalens. Adv Opt Mater 6, 1800592 (2018).
30. Sandus O. A review of emission polarization. Appl Opt 4, 1634–1642 (1965).
31. Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).
32. Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf Sci Rep 57, 59–112 (2005).
33. Polo J A Jr, Lakhtakia A. Surface electromagnetic waves: a review. Laser Photonics Rev 5, 234–246 (2011).
34. Barlow H M, Cullen A L. Surface waves. Proc IEE - Part III Radio Commun Eng 100, 329–341 (1953).
35. Shin J, Shen J T, Catrysse P B, Fan S H. Cut-through metal slit array as an anisotropic metamaterial film. IEEE J Sel Top Quantum Electron 12, 1116–1122 (2006).
36. Plum E, Fedotov V A, Zheludev N I. Optical activity in extrinsically chiral metamaterial. Appl Phys Lett 93, 191911 (2008).
37. Pu M B, Chen P, Wang Y Q, Zhao Z Y, Huang C et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett 102, 131906 (2013).
38. Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013).
Keywords:
Funds:
National Natural Science Funds under contact Nos. 61622508, 61622509, and 61675208
Export Citations as:
For
Get Citation:
Ma X L, Pu M B, Li X, Guo Y H, Luo X G. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019).
Issue Cover
Cited By(24)
Engineering Optics 2.0, 2019
Catenary Optics, 2019
Engineering Optics 2.0, 2019
Optics Communications, 2019
Engineering Optics 2.0, 2019
Applied Physics Express, 2019
Plasmonics, 2019
Applied Optics, 2019
ADVANCED optical materials, 2019
Optics express, 2020
Advanced Optical Materials, 2020
Optical Materials Express, 2020
Opto-Electronic Advances, 2020
Optics Communications, 2020
Opto-Electronic Advances, 2020
Related Articles