[1]
|
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). doi: 10.1038/nature01937
CrossRef Google Scholar
|
[2]
|
Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N et al. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Lett 9, 2553-2558 (2009). doi: 10.1021/nl900638p
CrossRef Google Scholar
|
[3]
|
Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005). doi: 10.1126/science.1108759
CrossRef Google Scholar
|
[4]
|
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J et al. Biosensing with plasmonic nanosensors. Nat Mater 7, 442-453 (2008). doi: 10.1038/nmat2162
CrossRef Google Scholar
|
[5]
|
Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11, 174-177 (2012). doi: 10.1038/nmat3263
CrossRef Google Scholar
|
[6]
|
Pendry J B, Martín-Moreno L, García-Vidal F J. Mimicking surface plasmons with structured surfaces. Science 305, 847-848 (2004). doi: 10.1126/science.1098999
CrossRef Google Scholar
|
[7]
|
Goubau G. On the excitation of surface waves. Proc IRE 40, 865-868 (1952). doi: 10.1109/JRPROC.1952.273856
CrossRef Google Scholar
|
[8]
|
Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons. Science 308, 670-672 (2005). doi: 10.1126/science.1109043
CrossRef Google Scholar
|
[9]
|
García-Vidal F J, Martín-Moreno L, Pendry J B. Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7, S97-S101 (2005). doi: 10.1088/1464-4258/7/2/013
CrossRef Google Scholar
|
[10]
|
Juluri B K, Lin S C S, Walker T R, Jensen L, Huang T J. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index. Opt Express 17, 2997-3006 (2009). doi: 10.1364/OE.17.002997
CrossRef Google Scholar
|
[11]
|
Elliott R. On the theory of corrugated plane surfaces. Trans IRE Prof Group Antennas Propag 2, 71-81 (1954). doi: 10.1109/T-AP.1954.27975
CrossRef Google Scholar
|
[12]
|
Maier S A, Andrews S R, Martín-Moreno L, García-Vidal F J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97, 176805 (2006). doi: 10.1103/PhysRevLett.97.176805
CrossRef Google Scholar
|
[13]
|
Nagpal P, Lindquist N C, Oh S H, Norris D J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594-597 (2009). doi: 10.1126/science.1174655
CrossRef Google Scholar
|
[14]
|
Zhou Y J, Jiang Q, Cui T J. Bidirectional bending splitter of designer surface plasmons. Appl Phys Lett 99, 111904 (2011). doi: 10.1063/1.3639277
CrossRef Google Scholar
|
[15]
|
Rivas J G. Terahertz: the art of confinement. Nat Photonics 2, 137-138 (2008). doi: 10.1038/nphoton.2008.12
CrossRef Google Scholar
|
[16]
|
Gan Q Q, Fu Z, Ding Y J, Bartoli F J. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett 100, 256803 (2008). doi: 10.1103/PhysRevLett.100.256803
CrossRef Google Scholar
|
[17]
|
Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron 58, 594201 (2015).
Google Scholar
|
[18]
|
Pors A, Moreno E, Martín-Moreno L, Pendry J B, García-Vidal F J. Localized spoof plasmons arise while texturing closed surfaces. Phys Rev Llett 108, 223905 (2012). doi: 10.1103/PhysRevLett.108.223905
CrossRef Google Scholar
|
[19]
|
Chen L W, Zheng X R, Du Z R, Jia B H, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale7, 14982-14988 (2015). doi: 10.1039/C5NR03304G
CrossRef Google Scholar
|
[20]
|
Li X, Chen L W, Li Y, Zhang X H, Pu M B et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102
CrossRef Google Scholar
|
[21]
|
Qin F, Ding L, Zhang L, Monticone F, Chum C C et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv2, e1501168 (2016). doi: 10.1126/sciadv.1501168
CrossRef Google Scholar
|
[22]
|
Gao H, Li Y, Chen L W, Jin J J, Pu M B et al. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale 10, 666-671 (2018). doi: 10.1039/C7NR07873K
CrossRef Google Scholar
|
[23]
|
Gan Q Q, Gao Y K, Wagner K, Vezenov D, Ding Y J et al. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proc Natl Acad Sci USA 108, 5169-5173 (2011). doi: 10.1073/pnas.1014963108
CrossRef Google Scholar
|
[24]
|
Williams C R, Andrews S R, Maier S A, Fernández-Domínguez A I, Martín-Moreno L et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics 2, 175-179 (2008). doi: 10.1038/nphoton.2007.301
CrossRef Google Scholar
|
[25]
|
Shen X P, Cui T J, Martin-Cano D, García-Vidal F J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA110, 40-45 (2013). doi: 10.1073/pnas.1210417110
CrossRef Google Scholar
|
[26]
|
Kianinejad A, Chen Z N, Qiu C W. Spoof plasmon-based slow-wave excitation of dielectric resonator antenna. IEEE Trans Antennas Propag 64, 2094-2099 (2016). doi: 10.1109/TAP.2016.2545738
CrossRef Google Scholar
|
[27]
|
Zhang H C, Tang W X, Xu J, Liu S, Liu J F et al. Reduction of shielding-box volume using SPP-like transmission lines. IEEE Trans Comp, Packag Manuf Technol 7, 1486-1492 (2017). doi: 10.1109/TCPMT.2017.2700950
CrossRef Google Scholar
|
[28]
|
Zhang H C, Cui T J, Xu J, Tang W X, Liu J F. Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv Mater Technol 2, 1600202 (2017). doi: 10.1002/admt.v2.1
CrossRef Google Scholar
|
[29]
|
He P H, Zhang H C, Tang W X, Wang Z X, Yan R T et al. A multi-layer spoof surface plasmon polariton waveguide with corrugated ground. IEEE Access 5, 25306-25311 (2017). doi: 10.1109/ACCESS.2017.2768481
CrossRef Google Scholar
|
[30]
|
Kianinejad A, Chen Z N, Qiu C W. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans Microw Theory Tech 63, 1817-1825 (2015). doi: 10.1109/TMTT.2015.2422694
CrossRef Google Scholar
|
[31]
|
Zhang D W, Zhang K, Wu Q, Yang G H, Sha X J. High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure. Opt Lett 42, 2766-2769 (2017). doi: 10.1364/OL.42.002766
CrossRef Google Scholar
|
[32]
|
Zhang D W, Zhang K, Wu Q, Dai R W, Sha X J. Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency. Opt Lett 43, 3176-3179 (2018). doi: 10.1364/OL.43.003176
CrossRef Google Scholar
|
[33]
|
Zhang H C, Zhang Q, Liu J F, Tang W X, Fan Y F et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Sci Rep 6, 23396 (2016). doi: 10.1038/srep23396
CrossRef Google Scholar
|
[34]
|
Zhang H C, Cui T J, Zhang Q, Fan Y F, Fu X J. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2, 1333-1340 (2015). doi: 10.1021/acsphotonics.5b00316
CrossRef Google Scholar
|
[35]
|
Ma H F, Shen X P, Cheng Q, Jiang W X, Cui T J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon Rev 8, 146-151 (2014). doi: 10.1002/lpor.201300118
CrossRef Google Scholar
|
[36]
|
Pan B C, Liao Z, Zhao J, Cui T J. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt Express 22, 13940-13950 (2014). doi: 10.1364/OE.22.013940
CrossRef Google Scholar
|