Liu X -Q, Bai B -F, Chen Q -D, Sun H -B. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019). doi: 10.29026/oea.2019.190021
Citation: Liu X -Q, Bai B -F, Chen Q -D, Sun H -B. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019). doi: 10.29026/oea.2019.190021

Review Open Access

Etching-assisted femtosecond laser modification of hard materials

More Information
  • With high hardness, high thermal and chemical stability and excellent optical performance, hard materials exhibit great potential applications in various fields, especially in harsh conditions. Femtosecond laser ablation has the capability to fabricate three-dimensional micro/nanostructures in hard materials. However, the low efficiency, low precision and high surface roughness are the main stumbling blocks for femtosecond laser processing of hard materials. So far, etching-assisted femtosecond laser modification has demonstrated to be the efficient strategy to solve the above problems when processing hard materials, including wet etching and dry etching. In this review, femtosecond laser modification that would influence the etching selectivity is introduced. The fundamental and recent applications of the two kinds of etching assisted femtosecond laser modification technologies are summarized. In addition, the challenges and application prospects of these technologies are discussed.
  • 加载中
  • [1] Kang I S, Kim J S, Kang M C, Lee K Y. Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining. J Mater Process Tech 201, 585-589 (2008). doi: 10.1016/j.jmatprotec.2007.11.187

    CrossRef Google Scholar

    [2] Toros A, Kiss M, Graziosi T, Sattari H, Gallo P et al. Precision micro-mechanical components in single crystal diamond by deep reactive ion etching. Microsyst Nanoeng 4, 12 (2018). doi: 10.1038/s41378-018-0014-5

    CrossRef Google Scholar

    [3] Chen T H, Fardel R, Arnold C B. Ultrafast z-scanning for high-efficiency laser micro-machining. Light Sci Appl 7, 17181 (2018). doi: 10.1038/lsa.2017.181

    CrossRef Google Scholar

    [4] Wang J N, Liu Y Q, Zhang Y L, Feng J, Wang H et al. Wearable superhydrophobic elastomer skin with switchable wettability. Adv Funct Mater 28, 1800625 (2018). doi: 10.1002/adfm.201800625

    CrossRef Google Scholar

    [5] Brasselet E, Malinauskas M, Žukauskas A, Juodkazis S. Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum. Appl Phys Lett 97, 211108 (2010). doi: 10.1063/1.3517519

    CrossRef Google Scholar

    [6] Jiang L, Wang A D, Li B, Cui T H, Lu Y F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl 7, 17134 (2018). doi: 10.1038/lsa.2017.134

    CrossRef Google Scholar

    [7] Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I et al. Additive Manufacturing of Ceramic-Based Materials. Adv Eng Mater 16, 729-754 (2014). doi: 10.1002/adem.201400097

    CrossRef Google Scholar

    [8] Liao Y, Ni J L, Qiao L L, Huang M, Bellouard Y et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica 2, 329-334 (2015). doi: 10.1364/OPTICA.2.000329

    CrossRef Google Scholar

    [9] Zhang Q M, Yu H Y, Barbiero M, Wang B K, Gu M. Artificial neural networks enabled by nanophotonics. Light Sci Appl 8, 42 (2019). doi: 10.1038/s41377-019-0151-0

    CrossRef Google Scholar

    [10] Xie X Z, Zhou C X, Wei X, Hu W, Ren Q L. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2, 180017 (2019). doi: 10.29026/oea.2019.180017

    CrossRef Google Scholar

    [11] Jiang H B, Zhang Y L, Liu Y, Fu X Y, Li Y F et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil. Laser Photonics Rev 10, 441-450 (2016). doi: 10.1002/lpor.201500256

    CrossRef Google Scholar

    [12] Xu B, Du W Q, Li J W, Hu Y L, Yang L et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Sci Rep 6, 19989 (2016). doi: 10.1038/srep19989

    CrossRef Google Scholar

    [13] Xu B, Hu W J, Du W Q, Hu Y L, Zhang C C et al. Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Opt Express 25, 16739-16753 (2017). doi: 10.1364/OE.25.016739

    CrossRef Google Scholar

    [14] Xu B, Shi Y, Lao Z X, Ni J C, Li G Q et al. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging. Lab Chip 18, 442-450 (2018). doi: 10.1039/C7LC01080J

    CrossRef Google Scholar

    [15] Serien D, Sugioka K. Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electron Adv 1, 180008 (2018).

    Google Scholar

    [16] Pham T A, Kim D P, Lim T W, Park S H, Yang D Y et al. Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv Funct Mater 16, 1235-1241 (2006). doi: 10.1002/adfm.200600009

    CrossRef Google Scholar

    [17] Cao Y Y, Takeyasu N, Tanaka T, Duan X M, Kawata S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5, 1144-1148 (2009). doi: 10.1002/smll.200801179

    CrossRef Google Scholar

    [18] Lan B, Hong M H, Ye K D, Wang Z B, Chong T C. Laser microfabrication of glass substrates by pocket scanning. In Fourth International Symposium on Laser Precision Microfabrication (SPIE, 2003). https://doi.org/10.1117/12.540725.

    Google Scholar

    [19] Hong M H, Sugioka K, Wu D J, Wong L L, Lu Y F et al. Laser-induced-plasma-assisted ablation for glass microfabrication. In International Symposium on Photonics and Applications (SPIE, 2001). https://doi.org/10.1117/12.446603.

    Google Scholar

    [20] Huang Z Q, Hong M H, Tiaw K S, Lin Q Y. Quality glass processing by laser induced backside wet etching. J Laser Micro Nanoen 2, 194-199 (2007). doi: 10.2961/jlmn.2007.03.0006

    CrossRef Google Scholar

    [21] Zhou Y, Hong M H, Fuh J Y H, Lu L, Luk'yanchuk B S et al. Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement. Appl Phys Lett 88, 023110 (2006). doi: 10.1063/1.2163988

    CrossRef Google Scholar

    [22] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5, e16133 (2016). doi: 10.1038/lsa.2016.133

    CrossRef Google Scholar

    [23] Smith M J, Winkler M, Sher M J, Lin Y T, Mazur E et al. The effects of a thin film dopant precursor on the structure and properties of femtosecond-laser irradiated silicon. Appl Phys A 105, 795-800 (2011). doi: 10.1007/s00339-011-6651-2

    CrossRef Google Scholar

    [24] Mao S S, Quéré F, Guizard S, Mao X, Russo R E et al. Dynamics of femtosecond laser interactions with dielectrics. Appl Phys A 79, 1695-1709 (2004). doi: 10.1007/s00339-004-2684-0

    CrossRef Google Scholar

    [25] Ams M, Marshall G D, Dekker P, Dubov M, Mezentsev V K et al. Investigation of ultrafast laser--photonic material interactions: challenges for directly written glass photonics. IEEE J Sel Top Quant Electr 14, 1370-1381 (2008). doi: 10.1109/JSTQE.2008.925809

    CrossRef Google Scholar

    [26] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci Appl 3, e149 (2014). doi: 10.1038/lsa.2014.30

    CrossRef Google Scholar

    [27] Davis K M, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Opt Lett 21, 1729-1731 (1996). doi: 10.1364/OL.21.001729

    CrossRef Google Scholar

    [28] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev 2, 26-46 (2008). doi: 10.1002/lpor.200710031

    CrossRef Google Scholar

    [29] Beresna M, Gecevičius M, Kazansky P G. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv Opt Photonics 6, 293-339 (2014). doi: 10.1364/AOP.6.000293

    CrossRef Google Scholar

    [30] Chan J W, Huser T, Risbud S, Krol D M. Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt Lett 26, 1726-1728 (2001). doi: 10.1364/OL.26.001726

    CrossRef Google Scholar

    [31] Ponader C W, Schroeder J F, Streltsov A M. Origin of the refractive-index increase in laser-written waveguides in glasses. J Appl Phys 103, 063516 (2008). doi: 10.1063/1.2888561

    CrossRef Google Scholar

    [32] Zoubir A, Rivero C, Grodsky R, Richardson K, Richardson M et al. Laser-induced defects in fused silica by femtosecond IR irradiation. Phys Rev B 73, 224117 (2006). doi: 10.1103/PhysRevB.73.224117

    CrossRef Google Scholar

    [33] Sun H B, Juodkazis S, Watanabe M, Matsuo S, Misawa H et al. Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser. J Phys Chem B 104, 3450-3455 (2000). doi: 10.1021/jp992828h

    CrossRef Google Scholar

    [34] Gui L, Xu B, Chong T C. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photonic Tech Lett 16, 1337-1339 (2004). doi: 10.1109/LPT.2004.826112

    CrossRef Google Scholar

    [35] Rodenas A, Kar A K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt Express 19, 17820-17833 (2011). doi: 10.1364/OE.19.017820

    CrossRef Google Scholar

    [36] Liu J R, Zhang Z Y, Flueraru C, Liu X P, Chang S D et al. Waveguide shaping and writing in fused silica using a femtosecond laser. IEEE J Sel Top Quant 10, 169-173 (2004). doi: 10.1109/JSTQE.2003.822945

    CrossRef Google Scholar

    [37] Nejadmalayeri A H, Herman P R, Burghoff J, Will M, Nolte S et al. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt Lett 30, 964-966 (2005). doi: 10.1364/OL.30.000964

    CrossRef Google Scholar

    [38] Calmano T, Siebenmorgen J, Hellmig O, Petermann K, Huber G. Nd: YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing. Appl Phys B 100, 131-135 (2010). doi: 10.1007/s00340-010-3929-6

    CrossRef Google Scholar

    [39] Li Q K, Lu Y M, Hua J G, Yu Y H, Wang L et al. Multilevel phase-type diffractive lens embedded in sapphire. Opt Lett 42, 3832-3835 (2017). doi: 10.1364/OL.42.003832

    CrossRef Google Scholar

    [40] Tian Z N, Hua J G, Yu F, Yu Y H, Liu H et al. Aplanatic zone plate embedded in sapphire. IEEE Photonic Tech Lett 30, 509-512 (2018). doi: 10.1109/LPT.2017.2772884

    CrossRef Google Scholar

    [41] Bhardwaj V R, Simova E, Corkum P B, Rayner D M, Hnatovsky C et al. Femtosecond laser-induced refractive index modification in multicomponent glasses. J Appl Phys 97, 083102 (2005). doi: 10.1063/1.1876578

    CrossRef Google Scholar

    [42] Flamini F, Magrini L, Rab A S, Spagnolo N, D'Ambrosio V et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci Appl 4, e354 (2015). doi: 10.1038/lsa.2015.127

    CrossRef Google Scholar

    [43] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage. Light Sci Appl 3, e177 (2014). doi: 10.1038/lsa.2014.58

    CrossRef Google Scholar

    [44] Wei D Z, Wang C W, Wang H J, Hu X P, Wei D et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat Photonics 12, 596-600 (2018). doi: 10.1038/s41566-018-0240-2

    CrossRef Google Scholar

    [45] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1, 217-224 (2002). doi: 10.1038/nmat767

    CrossRef Google Scholar

    [46] Juodkazis S, Nishimura K, Tanaka S, Misawa H, Gamaly E G et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys Rev Lett 96, 166101 (2006). doi: 10.1103/PhysRevLett.96.166101

    CrossRef Google Scholar

    [47] Gamaly E G, Juodkazis S, Nishimura K, Misawa H, Luther-Davies B et al. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation. Phys Rev B 73, 214101 (2006). doi: 10.1103/PhysRevB.73.214101

    CrossRef Google Scholar

    [48] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater 6, 824-832 (2007). doi: 10.1038/nmat2009

    CrossRef Google Scholar

    [49] Lian C, Zhang S B, Meng S. Ab initio evidence for nonthermal characteristics in ultrafast laser melting. Phys Rev B 94, 184310 (2016). doi: 10.1103/PhysRevB.94.184310

    CrossRef Google Scholar

    [50] Hegedüs J, Elliott S R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat Mater 7, 399-405 (2008). doi: 10.1038/nmat2157

    CrossRef Google Scholar

    [51] Bonse J, Baudach S, Krüger J, Kautek W, Lenzner M. Femtosecond laser ablation of silicon-modification thresholds and morphology. Appl Phys A 74, 19-25 (2014). doi: 10.1007/s003390100893

    CrossRef Google Scholar

    [52] Becker M F, Buckman A B, Walser R M, Lépine T, Georges P et al. Femtosecond laser excitation of the semiconductor-metal phase transition in VO2. Appl Phys Lett 65, 1507-1509 (1994). doi: 10.1063/1.112974

    CrossRef Google Scholar

    [53] Ma H L, Yang J Y, Dai Y, Zhang Y B, Lu B et al. Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl Surf Sci 253, 7497-7500 (2007). doi: 10.1016/j.apsusc.2007.03.047

    CrossRef Google Scholar

    [54] Vailionis A, Gamaly E G, Mizeikis V, Yang W G, Rode A V et al. Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nat Commun 2, 445 (2011). doi: 10.1038/ncomms1449

    CrossRef Google Scholar

    [55] Chen N K, Han D, Li X B, Liu F, Bang J et al. Giant lattice expansion by quantum stress and universal atomic forces in semiconductors under instant ultrafast laser excitation. Phys Chem Chem Phys 19, 24735-24741 (2017). doi: 10.1039/C7CP03103C

    CrossRef Google Scholar

    [56] Lin Y, Hong M H, Chong T C, Lim C S, Chen G X et al. Ultrafast-laser-induced parallel phase-change nanolithography. Appl Phys Lett 89, 041108 (2006). doi: 10.1063/1.2235855

    CrossRef Google Scholar

    [57] Juodkazis S, Nishimura K, Misawa H, Ebisui T, Waki R et al. Control over the crystalline state of sapphire. Adv Mater 18, 1361-1364 (2006). doi: 10.1002/adma.200501837

    CrossRef Google Scholar

    [58] Miotello A, Bonelli M, De Marchi G, Mattei G, Mazzoldi P et al. Formation of silver nanoclusters by excimer-laser interaction in silver-exchanged soda-lime glass. Appl Phys Lett 79, 2456 (2001). doi: 10.1063/1.1406984

    CrossRef Google Scholar

    [59] Liu X Q, Chen Q D, Wang R, Wang L, Yu X L et al. Simultaneous femtosecond laser doping and surface texturing for implanting applications. Adv Mater Interfaces 2, 1500058 (2015). doi: 10.1002/admi.201500058

    CrossRef Google Scholar

    [60] El Hamzaoui H, Bernard R, Chahadih A, Chassagneux F, Bois L et al. Room temperature direct space-selective growth of gold nanoparticles inside a silica matrix based on a femtosecond laser irradiation. Mater Lett 64, 1279-1282 (2010). doi: 10.1016/j.matlet.2010.03.008

    CrossRef Google Scholar

    [61] Marquestaut N, Petit Y, Royon A, Mounaix P, Cardinal T et al. Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: analogy with photography. Adv Funct Mater 24, 5824-5832 (2014). doi: 10.1002/adfm.201401103

    CrossRef Google Scholar

    [62] Li C, Shi X, Si J H, Chen F, Chen T et al. Photoinduced multiple microchannels inside silicon produced by a femtosecond laser. Appl Phys B 98, 377-381 (2010). doi: 10.1007/s00340-009-3743-1

    CrossRef Google Scholar

    [63] Liu X Q, Yu L, Ma Z C, Chen Q D. Silicon three-dimensional structures fabricated by femtosecond laser modification with dry etching. Appl Opt 56, 2157-2161 (2017). doi: 10.1364/AO.56.002157

    CrossRef Google Scholar

    [64] Ma Y C, Wang L, Guan K M, Jiang T, Cao X W et al. Silicon-based suspended structure fabricated by femtosecond laser direct writing and wet etching. IEEE Photonic Tech Lett 28, 1605-1608 (2016). doi: 10.1109/LPT.2016.2554203

    CrossRef Google Scholar

    [65] Deutsch T F, Fan J C C, Ehrlich D J, Turner G W, Chapman R L et al. Efficient GaAs solar cells formed by UV laser chemical doping. Appl Phys Lett 40, 722-724 (1982). doi: 10.1063/1.93204

    CrossRef Google Scholar

    [66] Sheehy M A, Tull B R, Friend C M, Mazur E. Chalcogen doping of silicon via intense femtosecond-laser irradiation. Mater Sci Eng B 137, 289-294 (2007). doi: 10.1016/j.mseb.2006.10.002

    CrossRef Google Scholar

    [67] Smith M J, Sher M J, Franta B, Lin Y T, Mazur E et al. Improving dopant incorporation during femtosecond-laser doping of Si with a Se thin-film dopant precursor. Appl Phys A 114, 1009-1016 (2014). doi: 10.1007/s00339-013-7673-8

    CrossRef Google Scholar

    [68] Paiè P, Bragheri F, Vazquez R M, Osellame R. Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab Chip 14, 1826-1833 (2014). doi: 10.1039/C4LC00133H

    CrossRef Google Scholar

    [69] Wu D, Xu J, Niu L G, Wu S Z, Midorikawa K et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci Appl 4, e228 (2015). doi: 10.1038/lsa.2015.1

    CrossRef Google Scholar

    [70] Marcinkevičius A, Juodkazis S, Watanabe M, Miwa M, Matsuo S et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26, 277-279 (2001). doi: 10.1364/OL.26.000277

    CrossRef Google Scholar

    [71] Gottmann J, Hermans M, Repiev N, Ortmann J. Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications-up-scaling of complexity and speed. Micromachines 8, 110 (2017). doi: 10.3390/mi8040110

    CrossRef Google Scholar

    [72] Cao X W, Chen Q D, Fan H, Zhang L, Juodkazis S et al. Liquid-assisted femtosecond laser precision-machining of silica. Nanomaterials 8, 287 (2018). doi: 10.3390/nano8050287

    CrossRef Google Scholar

    [73] Kiyama S, Matsuo S, Hashimoto S, Morihira Y. Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates. J Phys Chem C 113, 11560-11566 (2009).

    Google Scholar

    [74] Wang Z, Jiang L, Li X W, Wang A D, Yao Z L et al. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching. Opt Lett 43, 98-101 (2018). doi: 10.1364/OL.43.000098

    CrossRef Google Scholar

    [75] Juodkazis S, Nishi Y, Misawa H. Femtosecond laser-assisted formation of channels in sapphire using KOH solution. Phys Status Solidi Rapid Res Lett 2, 275-277 (2008). doi: 10.1002/pssr.200802203

    CrossRef Google Scholar

    [76] Hongo T, Sugioka K, Niino H, Cheng Y, Masuda M et al. Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser. J Appl Phys 97, 063517 (2005). doi: 10.1063/1.1856223

    CrossRef Google Scholar

    [77] Masuda M, Sugioka K, Cheng Y, Aoki N, Kawachi M et al. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76, 857-860 (2003). doi: 10.1007/s00339-002-1937-z

    CrossRef Google Scholar

    [78] Sugioka K, Cheng Y. Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36, 1020-1027 (2011). doi: 10.1557/mrs.2011.274

    CrossRef Google Scholar

    [79] Cheng Y, Sugioka K, Midorikawa K. Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications. Appl Surf Sci 248, 172-176 (2005). doi: 10.1016/j.apsusc.2005.03.078

    CrossRef Google Scholar

    [80] Hu Y L, Rao S L, Wu S Z, Wei P F, Qiu W X et al. All-Glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv Opt Mater 6, 1701299 (2018). doi: 10.1002/adom.201701299

    CrossRef Google Scholar

    [81] Wang C W, Yang L, Zhang C C, Rao S L, Wang Y L et al. Multilayered skyscraper microchips fabricated by hybrid "all-in-one" femtosecond laser processing. Microsyst Nanoeng 5, 17 (2019). doi: 10.1038/s41378-019-0056-3

    CrossRef Google Scholar

    [82] Hnatovsky C, Taylor R S, Simova E, Rajeev P P, Rayner D M et al. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl Phys A 84, 47-61 (2006). doi: 10.1007/s00339-006-3590-4

    CrossRef Google Scholar

    [83] Bellouard Y, Said A, Dugan M, Bado P. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12, 2120-2129 (2004). doi: 10.1364/OPEX.12.002120

    CrossRef Google Scholar

    [84] Wortmann D, Gottmann J, Brandt N, Horn-Solle H. Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching. Opt Express 16, 1517-1522 (2008). doi: 10.1364/OE.16.001517

    CrossRef Google Scholar

    [85] Mazilu M, Juodkazis S, Ebisui T, Matsuo S, Misawa H. Structural characterization of shock-affected sapphire. Appl Phys A 86, 197-200 (2007). doi: 10.1007/s00340-006-2528-z

    CrossRef Google Scholar

    [86] Choudhury D, Rodenas A, Paterson L, Díaz F, Jaque D et al. Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications. Appl Phys Lett 103, 041101 (2013). doi: 10.1063/1.4816338

    CrossRef Google Scholar

    [87] Bressel L, De Ligny D, Sonneville C, Martinez V, Mizeikis V et al. Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect[Invited]. Opt Mater Express 1, 605-613 (2011). doi: 10.1364/OME.1.000605

    CrossRef Google Scholar

    [88] Juodkazis S, Yamasaki K, Mizeikis V, Matsuo S, Misawa H. Formation of embedded patterns in glasses using femtosecond irradiation. Appl Phys A 79, 1549-1553 (2004). doi: 10.1007/s00339-004-2845-1

    CrossRef Google Scholar

    [89] Ródenas A, Gu M, Corrielli G, Paiè P, John S et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat Photonics 13, 105-109 (2019). doi: 10.1038/s41566-018-0327-9

    CrossRef Google Scholar

    [90] Tokel O, Turnali A, Makey G, Elahi P, Colakoglu T et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat Photonics 11, 639-645 (2017). doi: 10.1038/s41566-017-0004-4

    CrossRef Google Scholar

    [91] Li X W, Xie Q, Jiang L, Han W N, Wang Q S et al. Controllable Si (100) micro/nanostructures by chemical-etching-assisted femtosecond laser single-pulse irradiation. Appl Phys Lett 110, 181907 (2017). doi: 10.1063/1.4982790

    CrossRef Google Scholar

    [92] Shan C, Chen F, Yang Q, Li Y Y, Bian H et al. High-level integration of three-dimensional microcoils array in fused silica. Opt Lett 40, 4050-4053 (2015). doi: 10.1364/OL.40.004050

    CrossRef Google Scholar

    [93] Bian H, Shan C, Liu K Y, Chen F, Yang Q et al. A miniaturized Rogowski current transducer with wide bandwidth and fast response. J Micromech Microeng 26, 115015 (2016). doi: 10.1088/0960-1317/26/11/115015

    CrossRef Google Scholar

    [94] Bian H, Liu H W, Chen F, Yang Q, Qu P B et al. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces. Opt Express 20, 12939-12948 (2012). doi: 10.1364/OE.20.012939

    CrossRef Google Scholar

    [95] Deng Z F, Chen F, Yang Q, Bian H, Du G Q et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv Funct Mater 26, 1995-2001 (2016). doi: 10.1002/adfm.201504941

    CrossRef Google Scholar

    [96] Sima F, Sugioka K, Vázquez R M, Osellame R, Kelemen L et al. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics 7, 97 (2018).

    Google Scholar

    [97] Liu X Q, Chen Q D, Guan K M, Ma Z C, Yu Y H et al. Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev 11, 1600115 (2017). doi: 10.1002/lpor.201600115

    CrossRef Google Scholar

    [98] Hsu Y P, Chang S J, Su Y K, Sheu J K, Kuo C H et al. ICP etching of sapphire substrates. Opt Mater 27, 1171-1174 (2005). doi: 10.1016/j.optmat.2004.08.076

    CrossRef Google Scholar

    [99] Cao X W, Lu Y M, Fan H, Xia H, Zhang L et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array. Appl Opt 57, 9604-9608 (2018). doi: 10.1364/AO.57.009604

    CrossRef Google Scholar

    [100] Liu X Q, Yang S N, Yu L, Chen Q D, Zhang Y L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv Funct Mater 29, 1900037 (2019). doi: 10.1002/adfm.201900037

    CrossRef Google Scholar

    [101] Liu X Q, Yu L, Yang S N, Chen Q D, Wang L et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev 13, 1800272 (2019). doi: 10.1002/lpor.201800272

    CrossRef Google Scholar

    [102] Gomez S, Jun Belen R, Kiehlbauch M, Aydil E S. Etching of high aspect ratio structures in Si using SF6/O2 plasma. J Vac Sci Technol A 22, 606-615 (2004). doi: 10.1116/1.1710493

    CrossRef Google Scholar

    [103] Lallement L, Gosse C, Cardinaud C, Peignon-Fernandez M C, Rhallabi A. Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication. J Vac Sci Technol A 28, 277-286 (2010). doi: 10.1116/1.3298875

    CrossRef Google Scholar

    [104] Liu X Q, Yu L, Chen Q D, Sun H B. Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing. Appl Phys Lett 110, 091602 (2017). doi: 10.1063/1.4977562

    CrossRef Google Scholar

    [105] Lim T W, Son Y, Jeong Y J, Yang D Y, Kong H J et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11, 100-103 (2011). doi: 10.1039/C005325M

    CrossRef Google Scholar

    [106] Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121

    CrossRef Google Scholar

    [107] Liu X Q, Yang S N, Sun Y L, Yu L, Bai B F et al. Ultra-smooth micro-optical components of various geometries. Opt Lett 44, 2454-2457 (2019). doi: 10.1364/OL.44.002454

    CrossRef Google Scholar

    [108] Vogelaar L, Nijdam W, Van Wolferen H A G M, De Ridder R M, Segerink F B et al. Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography. Adv Mater 13, 1551-1554 (2001). doi: 10.1002/1521-4095(200110)13:20<1551::AID-ADMA1551>3.0.CO;2-V

    CrossRef Google Scholar

    [109] Liu C H, Hong M H, Cheung H W, Zhang F, Huang Z Q et al. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance. Opt Express 16, 10701-10709 (2008). doi: 10.1364/OE.16.010701

    CrossRef Google Scholar

    [110] Yang D, Liu L, Gong Q H, Li Y. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering. Macromol Rapid Commun 40, 1900041 (2019). doi: 10.1002/marc.201900041

    CrossRef Google Scholar

    [111] Ni J C, Wang C W, Zhang C C, Hu Y L, Yang L et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl 6, e17011 (2017). doi: 10.1038/lsa.2017.11

    CrossRef Google Scholar

    [112] He F, Xu H, Cheng Y, Ni J L, Xiong H et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35, 1106-1108 (2010). doi: 10.1364/OL.35.001106

    CrossRef Google Scholar

    [113] Lin J T, Xu Y X, Song J X, Zeng B, He F et al. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd: glass substrate by three-dimensional femtosecond laser micromachining. Opt Lett 38, 1458-1460 (2013). doi: 10.1364/OL.38.001458

    CrossRef Google Scholar

    [114] Kammel R, Ackermann R, Thomas J, Götte J, Skupin S et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci Appl 3, e169 (2014). doi: 10.1038/lsa.2014.50

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(11862) PDF downloads(4320) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint