Graus P, Möller T B, Leiderer P, Boneberg J, Polushkin N I. Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder‐induced ferromagnetism. Opto‐Electron Adv 3, 190027 (2020). doi: 10.29026/oea.2020.190027
Citation: Graus P, Möller T B, Leiderer P, Boneberg J, Polushkin N I. Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder‐induced ferromagnetism. Opto‐Electron Adv 3, 190027 (2020). doi: 10.29026/oea.2020.190027

Original Article Open Access

Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder-induced ferromagnetism

More Information
  • Current magnetic memories are based on writing and reading out the domains with opposite orientation of the magnetization vector. Alternatively, information can be encoded in regions with a different value of the saturation magnetization. The latter approach can be realized in principle with chemical order-disorder transitions in intermetallic alloys. Here, we study such transformations in a thin-film (35 nm) Fe60Al40alloy and demonstrate the formation of periodic magnetic nanostructures (PMNS) on its surface by direct laser interference patterning (DLIP). These PMNS are nonvolatile and detectable by magnetic force microscopy (MFM) at room temperature after DLIP with a single nanosecond pulse. We provide different arguments that the PMNS we observe originate from increasing magnetization in maxima of the interference pattern because of chemical disordering in the atomic lattice of the alloy at temperatures T higher than the critical temperature Tc for the order (B2)-disorder (A2) transition. Theoretically, our simulations of the temporal evolution of a partially ordered state at T > Tc reveal that the disordering rate is significant even below the melting threshold. Experimentally, we find that the PMNS are erasable with standard thermal annealing at T < Tc.
  • 加载中
  • [1] Nix F C, Shockley W. Order-disorder transformations in alloys. Rev Mod Phys 10, 1-71 (1938). doi: 10.1103/RevModPhys.10.1

    CrossRef Google Scholar

    [2] Cook H E, de Fontaine D, Hilliard J E. A model for diffusion on cubic lattices and its application to the early stages of ordering. Acta Metall 17, 765-773 (1969). doi: 10.1016/0001-6160(69)90083-2

    CrossRef Google Scholar

    [3] Metiu H, Kitahara K, Ross J. Stochastic theory of the kinetics of phase transitions. J Chem Phys 64, 292-299 (1976). doi: 10.1063/1.431920

    CrossRef Google Scholar

    [4] Khachaturyan A G. Ordering in substitutional and interstitial solid solutions. Prog Mater Sci 22, 1-150 (1978). doi: 10.1016/0079-6425(78)90003-8

    CrossRef Google Scholar

    [5] Martin G. Relaxation rate of conserved and nonconserved order parameters in replacive transitions. Phys Rev B 50, 12362-12366 (1994). doi: 10.1103/PhysRevB.50.12362

    CrossRef Google Scholar

    [6] Ye J, Bellon P. Nanoscale patterning of chemical order induced by displacement cascades in irradiated alloys. I. A kinetic Monte Carlo study. Phys Rev B 70, 094104 (2004). doi: 10.1103/PhysRevB.70.094104

    CrossRef Google Scholar

    [7] Mehrer H, Eggersmann M, Gude A, Salamon M, Sepiol B. Diffusion in intermetallic phases of the Fe-Al and Fe-Si Systems. Mater Sci Eng: A 239-240, 889-898 (1997). doi: 10.1016/S0921-5093(97)00680-1

    CrossRef Google Scholar

    [8] Eggersmann M, Mehrer H. Diffusion in intermetallic phases of the Fe-Al system. Philos Mag A 80, 1219-1244 (2000). doi: 10.1080/13642810008208592

    CrossRef Google Scholar

    [9] Würschum R, Grupp C, Schaefer H E. Simultaneous study of vacancy formation and migration at high temperatures in B2-type Fe aluminides. Phys Rev Lett 75, 97-100 (1995). doi: 10.1103/PhysRevLett.75.97

    CrossRef Google Scholar

    [10] Stana M, Sepiol B, Kozubski R, Leitner M. Chemical ordering beyond the superstructure in long-range ordered systems. New J Phys 18, 113051(2016). doi: 10.1088/1367-2630/18/11/113051

    CrossRef Google Scholar

    [11] Huffman G P, Fisher R M. Mössbauer studies of ordered and cold-worked Fe-Al alloys containing 30 to 50 at. % aluminum. J Appl Phys 38, 735 (1967). doi: 10.1063/1.1709403

    CrossRef Google Scholar

    [12] Beck P A. Some recent results on magnetism in alloys. Metall Mater Trans B 2, 2015-2024 (1971). doi: 10.1007/BF02917527

    CrossRef Google Scholar

    [13] Hernando A, Amils X, Nogués J, Surinãch S, Baró M D et al. Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders. Phys Rev B 58, R118649(R) (1998). doi: 10.1103/PhysRevB.58.R11864

    CrossRef Google Scholar

    [14] Menéndez E, Sort J, Liedke M O, Fassbender J, Suriñach S et al. Two-fold origin of the deformation-induced ferromagnetism in bulk Fe60Al40 (at.%) alloys. New J Phys 10, 103030 (2008). doi: 10.1088/1367-2630/10/10/103030

    CrossRef Google Scholar

    [15] Zamora L E, Alcázar G A P, Vélez G Y, Betancur J D, Marco J F et al. Disorder effect on the magnetic behavior of mechanically alloyed Fe1-x Alx (0.2≤x≤0.4). Phys Rev B 79, 094418 (2009). doi: 10.1103/PhysRevB.79.094418

    CrossRef Google Scholar

    [16] Murakami Y, Niitsu K, Tanigaki T, Kainuma R, Park H S et al. Magnetization amplified by structural disorder within nanometre scale interface region. Nat Commun 5, 4133 (2014). doi: 10.1038/ncomms5133

    CrossRef Google Scholar

    [17] Bali R, Wintz S, Meutzner F, Hübner R, Boucher R et al. Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism. Nano Lett 14, 435-441 (2014). doi: 10.1021/nl404521c

    CrossRef Google Scholar

    [18] Polushkin N I, Oliveira V, Vilar R, He M, Shugaev M V et al. Phase- change magnetic memory: Rewritable ferromagnetism by laser quenching of chemical disorder in Fe60Al40 alloy. Phys Rev Appl 10, 024023 (2018). doi: 10.1103/PhysRevApplied.10.024023

    CrossRef Google Scholar

    [19] Yoshida Y, Oosawa K, Watanabe S, Kaiju H, Kondo K et al. Nanopatterns induced by pulsed laser irradiation on the surface of an Fe-Al alloy and their magnetic properties. Appl Phys Lett 102, 183109 (2013). doi: 10.1063/1.4804363

    CrossRef Google Scholar

    [20] Ehrler J, He M, Shugaev M V, Polushkin N I, Wintz S et al. Laser-rewriteable ferromagnetism at thin-film surfaces. ACS Appl Mater Interfaces 10, 15232-15239 (2018). doi: 10.1021/acsami.8b01190

    CrossRef Google Scholar

    [21] Apiñaniz E, Plazaola F, Garitaonandia J S. Electronic structure calculations of Fe-rich ordered and disordered Fe-Al alloys. Eur Phys J B 31, 167-177 (2003). doi: 10.1140/epjb/e2003-00021-y

    CrossRef Google Scholar

    [22] Plazaola F, Apiñaniz E, Rodriguez D M, Legarra E, Garitaonandia J S. Fe-Al alloys' magnetism. In Advanced Magnetic Materials, Ed. by Malkinski L, University of New Orleans, USA, 2002.

    Google Scholar

    [23] Kulikov N I, Postnikov A V, Borstel G, Braun J. Onset of magnetism in B 2 transition-metal aluminides. Phys Rev B 59, 6824-6833 (1999). doi: 10.1103/PhysRevB.59.6824

    CrossRef Google Scholar

    [24] Smirnov A V, Shelton W A, Johnson D D. Importance of thermal disorder on the properties of alloys: origin of paramagnetism and structural anomalies in bcc-based Fe1-xAlx. Phys Rev B 71, 064408 (2005). doi: 10.1103/PhysRevB.71.064408

    CrossRef Google Scholar

    [25] Palm M, Stein F, Dehm G. Iron aluminides. Annu Rev Mater Res 49, 297-326 (2019). doi: 10.1146/annurev-matsci-070218-125911

    CrossRef Google Scholar

    [26] Müller-Meskamp L, Kim Y H, Roch T, Hofmann S, Scholz R et al. Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. Adv Mater 24, 906-910 (2012). doi: 10.1002/adma.201104331

    CrossRef Google Scholar

    [27] Daniel C, Mücklich F, Liu Z. Periodical micro-nano-structuring of metallic surfaces by interfering laser beams. Appl Surf Sci 208-209, 317-321 (2003). doi: 10.1016/S0169-4332(02)01381-8

    CrossRef Google Scholar

    [28] Zheng M, Yu M, Liu Y, Skomski R, Liou S H et al. Magnetic nanodot arrays produced by direct laser interference lithography. Appl Phys Lett 79, 2606-2608 (2001). doi: 10.1063/1.1409948

    CrossRef Google Scholar

    [29] Stärk M, Schlickeiser F, Nissen D, Hebler B, Graus P et al. Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning. Nanotechnology 26, 205302 (2015). doi: 10.1088/0957-4484/26/20/205302

    CrossRef Google Scholar

    [30] Martín-Fabiani I, Riedel S, Rueda D R, Siegel J, Boneberg J et al. Micro- and submicrostructuring thin polymer films with two and three-beam single pulse laser interference lithography. Langmuir 30, 8973-8979 (2014). doi: 10.1021/la5021059

    CrossRef Google Scholar

    [31] Davies C S, Januŝonis J, Kimel A V, Kirilyuk A, Tsukamoto A et al. Towards massively parallelized all-optical magnetic recording. J Appl Phys 123, 213904 (2018). doi: 10.1063/1.5003713

    CrossRef Google Scholar

    [32] Timmerwilke J, Liou S H, Cheng S F, Edelstein A S, Rewriting magnetic phase change memory by laser heating. J Phys D: Appl Phys 49, 165005 (2016). doi: 10.1088/0022-3727/49/16/165005

    CrossRef Google Scholar

    [33] Wang D P, Wang Z B, Zhang Z A, Yue Y, Li D Y et al. Effects of polarization on four-beam laser interference lithography. Appl Phys Lett 102, 081903 (2013). doi: 10.1063/1.4793752

    CrossRef Google Scholar

    [34] Bischof J. Metallische dünnfilmschmelzen nach pulslaser-bestrahlung: phasenumwandlungen und Instabilitäten (Konstanz, Univ, Diss, 1997).

    Google Scholar

    [35] Rudajevová A, Buriánek J. Determination of thermal diffusivity and thermal conductivity of Fe-Al Alloys in the concentration range 22 to 50 at.% Al. J Phase Equilib 22, 560-563 (2001). doi: 10.1007/s11669-001-0075-1

    CrossRef Google Scholar

    [36] Chanbi D, Ogam E, Amara S E, Fellah Z E A. Synthesis and mechanical characterization of binary and ternary intermetallic alloys based on Fe-Ti-Al by resonant ultrasound vibrational methods. Materials 11, 746 (2018). doi: 10.3390/ma11050746

    CrossRef Google Scholar

    [37] Piatkowski J, Przeliorz R, Jablonska M. The specific heat capacity and oxidation kinetics of NiAl, FeAl and TiAl alloys. Solid State Phenom 203-204, 431-434 (2013). doi: 10.4028/www.scientific.net/SSP.203-204.431

    CrossRef Google Scholar

    [38] Bukharaev A A, Ovchinnikov D V, Nurgazizov N I, Kukovitskiĭ E F, Klaĭber M et al. Investigation of micromagnetism and magnetic reversal of Ni nanoparticles using a magnetic force microscope. Phys Solid State 40, 1163-1168 (1998). doi: 10.1134/1.1130511

    CrossRef Google Scholar

    [39] Alekseev A M, Bykov V A, Popkov A F, Polushkin N I, Korneev V I. Observation of remanent states of small magnetic particles: Micromagnetic simulation and experiment. J Exp Theor Phys Lett 75, 268-272 (2002). doi: 10.1134/1.1481461

    CrossRef Google Scholar

    [40] Zhu X B, Grutter P. Magnetic force microscopy studies of patterned magnetic structures. IEEE Trans Magn 39, 3420-3425 (2003). doi: 10.1109/TMAG.2003.816170

    CrossRef Google Scholar

    [41] Zhang W, Singh R, Bray-Ali N, Haas S. Scaling analysis and application: phase diagram of magnetic nanorings and elliptical nanoparticles. Phys Rev B 77, 144428 (2008). doi: 10.1103/PhysRevB.77.144428

    CrossRef Google Scholar

    [42] Chang J, Mironov V L, Gribkov B A, Fraerman A A, Gusev S A et al. Magnetic state control of ferromagnetic nanodots by magnetic force microscopy probe. J Appl Phys 100, 104304 (2006). doi: 10.1063/1.2384811

    CrossRef Google Scholar

    [43] Wei J S, Jiao X B, Gan F X, Xiao M F. Laser pulse induced bumps in chalcogenide phase change films. J Appl Phys 103, 124516 (2008). doi: 10.1063/1.2948928

    CrossRef Google Scholar

    [44] Stein F, Palm M. Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. Int J Mater Res 98, 580-588 (2007). doi: 10.3139/146.101512

    CrossRef Google Scholar

  • Supplementary information for Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder-induced ferromagnetism
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint