Zhao Z Y, Tang M, Lu C. Distributed multicore fiber sensors. Opto-Electron Adv 3, 190024 (2020). doi: 10.29026/oea.2020.190024
Citation: Zhao Z Y, Tang M, Lu C. Distributed multicore fiber sensors. Opto-Electron Adv 3, 190024 (2020). doi: 10.29026/oea.2020.190024

Review Open Access

Distributed multicore fiber sensors

More Information
  • Multicore fiber (MCF) which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels. Different from the situation in standard single mode fiber (SMF), the fiber bending gives rise to tangential strain in off-center cores, and this unique feature has been employed for directional bending and shape sensing, where strain measurement is achieved by using either fiber Bragg gratings (FBGs), optical frequency-domain reflectometry (OFDR) or Brillouin distributed sensing technique. On the other hand, the parallel spatial cores enable space-division multiplexed (SDM) system configuration that allows for the multiplexing of multiple distributed sensing techniques. As a result, multi-parameter sensing or performance enhanced sensing can be achieved by using MCF. In this paper, we review the research progress in MCF based distributed fiber sensors. Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented. The bending sensitivity of off-center cores is analyzed. Curvature and shape sensing, as well as various SDM distributed sensing using MCF are summarized, and the working principles of diverse MCF sensors are discussed. Finally, we present the challenges and prospects of MCF for distributed sensing applications.
  • 加载中
  • [1] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photon 7, 354-362 (2013). doi: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    [2] Winzer P J. Making spatial multiplexing a reality. Nat Photonics 8, 345-348 (2014). doi: 10.1038/nphoton.2014.58

    CrossRef Google Scholar

    [3] Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8, 865-870 (2014). doi: 10.1038/nphoton.2014.243

    CrossRef Google Scholar

    [4] Mizuno T, Takara H, Sano A, Miyamoto Y. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber. J Lightwave Technol 34, 582-592 (2016). doi: 10.1109/JLT.2015.2482901

    CrossRef Google Scholar

    [5] Ryf R, Sierra A, Essiambre R J, Gnauck A H, Randel S et al. Coherent 1200-km 6x6 MIMO mode-multiplexed transmission over 3-core microstructured fiber. In Proceedings of 37th European Conference and Exhibition on Optical Communication 1-3 (IEEE, 2011).10.1364/ECOC.2011.Th.13.C.1

    Google Scholar

    [6] Gonda T, Imamura K, Sugizaki R, Kawaguchi Y, Tsuritani T. 125 μm 5-core fibre with heterogeneous design suitable for migration from single-core system to multi-core system. In Proceedings of 42nd European Conference on Optical Communication 1-3 (IEEE, 2016).

    Google Scholar

    [7] Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T et al. 109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber. In Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference PDPB6 (Optical Society of America, 2011); https://doi.org/10.1364/OFC.2011.PDPB6.10.1364/OFC.2011.PDPB6

    Google Scholar

    [8] Takara H, Sano A, Kobayashi T, Kubota H, Kawakami H et al. 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency. In Proceedings of 38th European Conference and Exhibition of Optical Communication Th.3.C.1 (Optical Society of America, 2012); https://doi.org/10.1364/ECEOC.2012.Th.3.C.1.

    Google Scholar

    [9] Sano A, Takara H, Kobayashi T, Kawakami H, Kishikawa H et al. 409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Opt Express 21, 16777-16783 (2013). doi: 10.1364/OE.21.016777

    CrossRef Google Scholar

    [10] Li M J, Hoover B, Nazarov V N, Butler D L. Multicore fiber for optical interconnect applications. In Proceedings of the 17th Opto-Electronics and Communications Conference 564-565 (IEEE, 2012); https://doi.org/10.1109/OECC.2012.6276573.

    Google Scholar

    [11] Van Newkirk A, Antonio-Lopez J E, Salceda-Delgado G, Piracha M U, Amezcua-Correa R et al. Multicore fiber sensors for simultaneous measurement of force and temperature. IEEE Photonics Technol Lett 27, 1523-1526 (2015). doi: 10.1109/LPT.2015.2427733

    CrossRef Google Scholar

    [12] Saitoh K, Matsuo S. Multicore fiber technology. J Lightwave Technol 34, 55-66 (2016). doi: 10.1109/JLT.2015.2466444

    CrossRef Google Scholar

    [13] Saridis G M, Alexandropoulos D, Zervas G, Simeonidou D. Survey and evaluation of space division multiplexing: from technologies to optical networks. IEEE Commun Surveys Tuts 17, 2136-2156 (2015). doi: 10.1109/COMST.2015.2466458

    CrossRef Google Scholar

    [14] Klaus W, Sakaguchi J, Puttnam B J, Awaji Y, Wada N et al. Free-space coupling optics for multicore fibers. IEEE Photonics Technol Lett 24, 1902-1905 (2012). doi: 10.1109/LPT.2012.2217490

    CrossRef Google Scholar

    [15] Tottori Y, Kobayashi T, Watanabe M. Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photonics Technol Lett 24, 1926-1928 (2012). doi: 10.1109/LPT.2012.2219305

    CrossRef Google Scholar

    [16] Thomson R R, Bookey H T, Psaila N D, Fender A, Campbell S et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt Express 15, 11691-11697 (2007). doi: 10.1364/OE.15.011691

    CrossRef Google Scholar

    [17] Ding Y H, Ye F H, Peucheret C, Ou H Y, Miyamoto Y et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express 23, 3292-3298 (2015). doi: 10.1364/OE.23.003292

    CrossRef Google Scholar

    [18] Zhu B, Taunay T F, Yan M F, Fini J M, Fishteyn M et al. Seven-core multicore fiber transmissions for passive optical network. Opt Express 18, 11117-11122 (2010). doi: 10.1364/OE.18.011117

    CrossRef Google Scholar

    [19] Watanabe K, Saito T, Imamura K, Shiino M. Development of fiber bundle type fan-out for multicore fiber. In Proceedings of the 17th Opto-Electronics and Communications Conference 475-476 (IEEE, 2012); https://doi.org/10.1109/OECC.2012.6276529.

    Google Scholar

    [20] Noordegraaf D, Skovgaard P M W, Nielsen M D, Bland-Hawthorn J. Efficient multi-mode to single-mode coupling in a photonic lantern. Opt Express 17, 1988-1994 (2009). doi: 10.1364/OE.17.001988

    CrossRef Google Scholar

    [21] Li B R, Feng Z H, Tang M, Xu Z L, Fu S N et al. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats. Opt Express 23, 10997-11006 (2015). doi: 10.1364/OE.23.010997

    CrossRef Google Scholar

    [22] Tange M, Zhao Z Y, Gan L, Wu H, Wang R X et al. Spatial-division multiplexed optical sensing using MCF and FMF. In Proceedings of Advanced Photonics SoM2G.3 (Optical Society of America, 2016); https://doi.org/10.1364/SOF.2016.SoM2G.3.

    Google Scholar

    [23] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt Express 20, 2967-2973 (2012). doi: 10.1364/OE.20.002967

    CrossRef Google Scholar

    [24] Zhao Z Y, Liu Z Y, Tang M, Fu S N, Wang L et al. Robust in-fiber spatial interferometer using multicore fiber for vibration detection. Opt Express 26, 29629-29637 (2018). doi: 10.1364/OE.26.029629

    CrossRef Google Scholar

    [25] Zhao Z Y, Soto M A, Tang M, Thévenaz L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt Express 24, 25211-25223 (2016). doi: 10.1364/OE.24.025211

    CrossRef Google Scholar

    [26] Moore J P. Shape sensing using multi-core fiber. In Proceedings of Optical Fiber Communication Conference Th1C.2 (Optical Society of America, 2015); https://doi.org/10.1364/OFC.2015.Th1C.2.

    Google Scholar

    [27] NASA. NASA langley's highly accurate position detection and shape sensing with fiber optics: novel method for determining position, shape, and curvature. https://technology.nasa.gov/media/Fiber_Optic_Shape_Sensing.pdf.

    Google Scholar

    [28] Klute S M, Duncan R G, Fielder R S, Butler G W, Mabe J H et al. Fiber-optic shape sensing and distributed strain measurements on a morphing chevron. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006); https://doi.org/10.2514/6.2006-624.

    Google Scholar

    [29] Duncan R. Sensing shape: fiber-Bragg-grating sensor arrays monitor shape at a high resolution. SPIE Newsroom. http://spie.org/x15732.xml.

    Google Scholar

    [30] Soller B J, Gifford D K, Wolfe M S, Froggatt M E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt Express 13, 666-674 (2005). doi: 10.1364/OPEX.13.000666

    CrossRef Google Scholar

    [31] Duncan R G, Froggatt M E, Kreger S T, Seeley R J, Gifford D K et al. High-accuracy fiber-optic shape sensing. Proc SPIE 6530, 65301S (2007). doi: 10.1117/12.720914

    CrossRef Google Scholar

    [32] Chan H M, Parker A R, Piazza A, Richards W L. Fiber-optic sensing system: overview, development and deployment in flight at NASA. In Proceedings of Avionics and Vehicle Fiber-Optics and Photonics Conference 71-73 (IEEE, 2015); https://doi.org/10.1109/AVFOP.2015.7356646.

    Google Scholar

    [33] Kreger S T, Gifford D K, Froggatt M E, Soller B J, Wolfe M S. High resolution distributed strain or temperature measurements in single-and multi-mode fiber using swept-wavelength interferometry. In Proceedings of Optical Fiber Sensors ThE42 (Optical Society of America, 2006); https://doi.org/10.1364/OFS.2006.ThE42.

    Google Scholar

    [34] Kreger S T, Gifford D K, Froggatt M E, Sang A K, Duncan R G et al. High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter. Proc SPIE 6530, 65301R (2007). doi: 10.1117/12.720913

    CrossRef Google Scholar

    [35] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl Opt 37, 1735-1740 (1998). doi: 10.1364/AO.37.001735

    CrossRef Google Scholar

    [36] Askins C G, Taunay T F, Miller G A, Wright B M, Peele J R et al. Inscription of fiber Bragg gratings in multicore fiber. In Proceedings of Nonlinear Photonics JWA39 (Optical Society of America, 2007); https://doi.org/10.1364/BGPP.2007.JWA39.

    Google Scholar

    [37] Askins C G, Miller G A, Friebele E J. Bend and twist sensing in a multi-core optical fiber. In Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society 109-110 (IEEE, 2008); https://doi.org/10.1109/LEOS.2008.4688512.

    Google Scholar

    [38] Askins C G, Miller G A, Friebele E J. Bend and twist sensing in a multiple-core optical fiber. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference OMT3 (Optical Society of America, 2008).

    Google Scholar

    [39] Froggatt M, Klein J, Gifford D. Shape sensing of multiple core optical fiber. In Proceedings of Imaging and Applied Optics AIMB2 (Optical Society of America, 2011); https://doi.org/10.1364/AIO.2011.AIMB2.

    Google Scholar

    [40] Lally E M, Reaves M, Horrell E, Klute S, Froggatt M E. Fiber optic shape sensing for monitoring of flexible structures. Proc SPIE 8345, 83452Y (2012). doi: 10.1117/12.917490

    CrossRef Google Scholar

    [41] Westbrook P S, Feder K S, Kremp T, Taunay T F, Monberg E et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays. Proc SPIE 8938, 89380H (2014).

    Google Scholar

    [42] Westbrook P S, Feder K S, Kremp T, Taunay T F, Monberg E et al. Multicore optical fiber grating array fabrication for medical sensing applications. Proc SPIE 9317, 93170C (2015).

    Google Scholar

    [43] Kremp T, Feder K S, Ko W, Westbrook P S. Performance characteristics of continuous multicore fiber optic sensor arrays. Proc SPIE 10058, 100580V (2017).

    Google Scholar

    [44] Westbrook P S, Kremp T, Feder K S, Ko W, Monberg E M et al. Continuous multicore optical fiber grating arrays for distributed sensing applications. J Lightwave Technol 35, 1248-1252 (2017). doi: 10.1109/JLT.2017.2661680

    CrossRef Google Scholar

    [45] Westbrook P S, Kremp T, Feder K S, Ko W, Monberg E M et al. Improving distributed sensing with continuous gratings in single and multi-core fibers. In Proceedings of Optical Fiber Communication Conference W1K.1 (Optical Society of America, 2018); https://doi.org/10.1364/OFC.2018.W1K.1.

    Google Scholar

    [46] Zhao Z Y, Soto M A, Tang M, Thévenaz L. Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers. In Proceedings of Advanced Photonics SeM4D.4 (Optical Society of America, 2016); https://doi.org/10.1364/SENSORS.2016.SeM4D.4.

    Google Scholar

    [47] Zhao Z Y, Soto M A, Tang M, Thévenaz L. Demonstration of distributed shape sensing based on Brillouin scattering in multi-core fibers. In Proceedings of the 25th Optical Fiber Sensors 1-4 (IEEE, 2017); https://doi.org/10.1117/12.2267486.

    Google Scholar

    [48] Li W H, Bao X Y, Li Y, Chen L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt Express 16, 21616-21625 (2008). doi: 10.1364/OE.16.021616

    CrossRef Google Scholar

    [49] Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light Sci Appl 5, e16074 (2016). doi: 10.1038/lsa.2016.74

    CrossRef Google Scholar

    [50] Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt Lett 30, 1276-1278 (2005). doi: 10.1364/OL.30.001276

    CrossRef Google Scholar

    [51] Taki M, Signorini A, Oton C J, Nannipieri T, Di Pasquale F. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding. Opt Lett 38, 4162-4165 (2013). doi: 10.1364/OL.38.004162

    CrossRef Google Scholar

    [52] Martins H F, Martin-Lopez S, Corredera P, Salgado P, Frazão O et al. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Opt Lett 38, 872-874 (2013). doi: 10.1364/OL.38.000872

    CrossRef Google Scholar

    [53] Zhao Z Y, Dang Y L, Tang M, Duan L, Wang M et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber. Opt Express 24, 25111-25118 (2016). doi: 10.1364/OE.24.025111

    CrossRef Google Scholar

    [54] Li M J, Li S P, Derick J A, Stone J S, Chow B C et al. Dual core optical fiber for distributed Brillouin fiber sensors. In Proceedings of Asia Communications and Photonics Conference AW4I.3 (Optical Society of America, 2014); https://doi.org/10.1364/ACPC.2014.AW4I.3.

    Google Scholar

    [55] Mizuno Y, Hayashi N, Tanaka H, Wada Y, Nakamura K. Brillouin scattering in multi-core optical fibers for sensing applications. Sci Rep 5, 11388 (2015). doi: 10.1038/srep11388

    CrossRef Google Scholar

    [56] Zhao Z Y, Dang Y L, Tang M, Li B R, Gan L et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber. Opt Lett 42, 171-174 (2017). doi: 10.1364/OL.42.000171

    CrossRef Google Scholar

    [57] Zhao Z Y, Tang M, Fu S N, Tong W J, Liu D M. Distributed and discriminative Brillouin optical fiber sensing based on heterogeneous multicore fiber. In Proceedings of Optical Fiber Communication Conference W3H.5 (Optical Society of America, 2017); https://doi.org/10.1364/OFC.2017.W3H.5.

    Google Scholar

    [58] Zaghloul M A S, Wang M H, Milione G, Li M J, Li S P et al. Discrimination of temperature and strain in Brillouin optical time domain analysis using a multicore optical fiber. Sensors 18, 1176 (2018).

    Google Scholar

    [59] Muanenda Y, Oton C J, Faralli S, Nannipieri T, Signorini A et al. Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection. Opt Lett 41, 587-590 (2016). doi: 10.1364/OL.41.000587

    CrossRef Google Scholar

    [60] Zhao Z Y, Tang M, Wang L, Fu S N, Tong W J et al. Enabling simultaneous DAS and DTS measurement through multicore fiber based space-division multiplexing. In Proceedings of Optical Fiber Communication Conference W2A.7 (Optical Society of America, 2018); https://doi.org/10.1364/OFC.2018.W2A.7.

    Google Scholar

    [61] Zhao Z Y, Dang Y L, Tang M, Wang L, Gan L et al. Enabling simultaneous DAS and DTS through space-division multiplexing based on multicore fiber. J Lightwave Technol 36, 5707-5713 (2018). doi: 10.1109/JLT.2018.2878559

    CrossRef Google Scholar

    [62] Zhu T, He Q, Xiao X H, Bao X Y. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Opt Express 21, 2953-2963 (2013). doi: 10.1364/OE.21.002953

    CrossRef Google Scholar

    [63] Zhao Z Y, Tang M, Wang L, Guo N, Tam H Y et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber. J Lightwave Technol 36, 5764-5772 (2018). doi: 10.1109/JLT.2018.2878450

    CrossRef Google Scholar

    [64] Koyamada Y, Imahama M, Kubota K, Hogari K. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J Lightwave Technol 27, 1142-1146 (2009). doi: 10.1109/JLT.2008.928957

    CrossRef Google Scholar

    [65] Lu X, Soto M A, Thévenaz L. MilliKelvin resolution in cryogenic temperature distributed fibre sensing based on coherent Rayleigh scattering. Proc SPIE 9157, 91573R (2014).

    Google Scholar

    [66] Pastor-Graells J, Martins H F, Garcia-Ruiz A, Martin-Lopez S, Gonzalez-Herraez M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt Express 24, 13121-13133 (2016). doi: 10.1364/OE.24.013121

    CrossRef Google Scholar

    [67] Dang Y L, Zhao Z Y, Tang M, Zhao C, Gan L et al. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber. Opt Express 25, 20183-20193 (2017). doi: 10.1364/OE.25.020183

    CrossRef Google Scholar

    [68] Sun X G, Li J, Burgess D T, Hines M, Zhu B. A multicore optical fiber for distributed sensing. Proc SPIE 9098, 90980W (2014).

    Google Scholar

    [69] Yangtze Optical Fibre and Cable Joint Stock Limited Company (YOFC). http://en.yofc.com/.

    Google Scholar

    [70] Chiral Photonics, Inc. https://www.chiralphotonics.com/.

    Google Scholar

    [71] Optoscribe. http://www.optoscribe.com/.

    Google Scholar

    [72] Shen L, Gan L, Dong Z R, Li B R, Liu D M et al. End-view image processing based angle alignment techniques for specialty optical fibers. IEEE Photonics J 9, 1-8 (2017). doi: 10.1109/jphot.2017.2678165

    CrossRef Google Scholar

    [73] Diamandi H H, London Y, Zadok A. Opto-mechanical inter-core cross-talk in multi-core fibers. Optica 4, 289-297 (2017). doi: 10.1364/OPTICA.4.000289

    CrossRef Google Scholar

    [74] Bashan G, Diamandi H H, London Y, Preter E, Zadok A. Optomechanical time-domain reflectometry. Nat Commun 9, 2991 (2018). doi: 10.1038/s41467-018-05404-0

    CrossRef Google Scholar

    [75] Chow D M, Yang Z S, Soto M A, Thévenaz L. Distributed forward Brillouin sensor based on local light phase recovery. Nat Commun 9, 2990 (2018). doi: 10.1038/s41467-018-05410-2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Article Metrics

Article views(17157) PDF downloads(3773) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint