Dispersion control is crucial in optical systems, and chromatic aberration is an important factor affecting imaging quality in imaging systems. Due to the inherent property of materials, dispersion engineering is complex and needs to trade off other aberration in traditional ways. Although metasurface offers an effective method to overcome these limits and results in well-engineered dispersion, off-axis dispersion control is still a challenging topic. In this paper, we design a single-layer metalens which is capable of focusing at three wavelengths (473 nm, 532 nm, and 632 nm) with different incident angles (0°, -17° and 17°) into the same point. We also demonstrate that this metalens can provide an alternative for the bulky color synthetic prism in a 3-chips digital micromirror device (DMD) laser projection system. Through this approach, various off-axis dispersion controlling optical devices could be realized.
Home > Journal Home > Opto-Electronic Advances
Opto-Electronic Advances
ISSN: 2096-4579
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging
Author Affiliations

First published at:Apr 21, 2020
Abstract
References
1. Yang C A, Edwards P, Shi K B, Liu Z W. Proposal and demonstration of a spectrometer using a diffractive optical element with dual dispersion and focusing functionality. Opt Lett 36, 2023–2025 (2011).
2. Gong Y D, Li T J, Jian S S. Multi-channel fiber grating for DWDM. Chin J Electron 9, 292–295 (2000).
3. Stone T, George N. Hybrid diffractive-refractive lenses and achromats. Appl Opt 27, 2960–2971 (1988).
4. Luo X G, Tsai D, Gu M, Hong M H. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 48, 2458–2494 (2019).
5. Luo X G, Tsai D, Gu M, Hong M H. Subwavelength interference of light on structured surfaces. Adv Opt Photonics 10, 757–842 (2018).
6. Nemati A, Wang Q, Hong M H, Teng J H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018).
7. Luo X G. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31, 1804680 (2019).
8. Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014).
9. Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto‐Electron Adv 1, 180021 (2018).
10. Guo Y H, Pu M B, Zhao Z Y, Wang Y Q, Jin J J et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016).
11. Jin J J, Pu M B, Wang Y Q, Li X, Ma X L et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv Mater Technol 2, 1600201 (2017).
12. Pu M B, Li X, Ma X L, Wang Y Q, Zhao Z Y et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015).
13. Li X, Chen L W, Li Y, Zhang X H, Pu M B et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016).
14. Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun 7, 12533 (2016).
15. Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015).
16. Ma X L, Pu M B, Li X, Guo Y H, Luo X G. All‐metallic wide‐angle metasurfaces for multifunctional polarization manipulation. Opto‐Electron Adv 2, 180023 (2019).
17. Khorasaninejad M, Shi Z, Zhu A Y, Chen W T, Sanjeev V et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17, 1819–1824 (2017).
18. Chen B H, Wu P C, Su V C, Lai Y C, Chu C H et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett 17, 6345–6352 (2017).
19. Pu M B, Li X, Guo Y H, Ma X L, Luo X G. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471–31477 (2017).
20. Ni X J, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310–1314 (2015).
21. Pu M B, Zhao Z Y, Wang Y Q, Li X, Ma X L et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci Rep 5, 9822 (2015).
22. Xie X, Li X, Pu M B, Ma X L, Liu K P et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv Funct Mater 28, 1706673 (2018).
23. Xie X, Pu M B, Huang Y J, Ma X L, Li X et al. Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field. Adv Mater Technol 4, 1800612 (2019).
24. Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011).
25. Li K, Guo Y H, Pu M B, Li X, Ma X L et al. Dispersion controlling meta-lens at visible frequency. Opt Express 25, 21419–21427 (2017).
26. Lin D M, Holsteen A L, Maguid E, Wetzstein G, Kik P G et al. Photonic multitasking interleaved si nanoantenna phased array. Nano Lett 16, 7671–7676 (2016).
27. Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).
28. Khorasaninejad M, Chen W T, Oh J, Capasso F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett 16, 3732–3737 (2016).
29. Shi Z J, Khorasaninejad M, Huang Y W, Roques-Carmes C, Zhu A Y et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett 18, 2420–2427 (2018).
30. Fan Q B, Zhu W Q, Liang Y Z, Huo P C, Zhang C et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Lett 19, 1158–1165 (2019).
31. Fan Q B, Huo P C, Wang D P, Liang Y Z, Yan F et al. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays. Sci Rep 7, 45044 (2017).
32. Deng Z L, Zhang S, Wang G P. Wide-angled off-axis achromatic metasurfaces for visible light. Opt Express 24, 23118–23128 (2016).
33. Liu S, Zhang L, Yang Q L, Xu Q, Yang Y et al. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Adv Opt Mater 4, 1965–1973 (2016).
34. Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016).
35. The working principle of DMD. (last accessed December 3, 2018); http://www.ti.com.cn/product/cn/dlp480re/
36. Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters. Appl Opt 32, 2606–2613 (1993).
37. Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs. Phys Rev B 65, 235112 (2002).
Keywords:
Funds:
National Natural Science Foundation of China under contact Nos. 61622508, 61622509, and 61575201
Export Citations as:
For
Get Citation:
Dou K H, Xie X, Pu M B, Li X, Ma X L et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020).
Previous: Optically pumped room temperature low threshold deep UV lasers grown on native AlN substrates