Dou K H, Xie X, Pu M B, Li X, Ma X L et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020). doi: 10.29026/oea.2020.190005
Citation: Dou K H, Xie X, Pu M B, Li X, Ma X L et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020). doi: 10.29026/oea.2020.190005

Original Article Open Access

Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging

More Information
  • These authors contributed equally to this work.

  • Corresponding author: X G Luo, E-mail: lxg@ioe.ac.cn
  • Dispersion control is crucial in optical systems, and chromatic aberration is an important factor affecting imaging quality in imaging systems. Due to the inherent property of materials, dispersion engineering is complex and needs to trade off other aberration in traditional ways. Although metasurface offers an effective method to overcome these limits and results in well-engineered dispersion, off-axis dispersion control is still a challenging topic. In this paper, we design a single-layer metalens which is capable of focusing at three wavelengths (473 nm, 532 nm, and 632 nm) with different incident angles (0°, -17° and 17°) into the same point. We also demonstrate that this metalens can provide an alternative for the bulky color synthetic prism in a 3-chips digital micromirror device (DMD) laser projection system. Through this approach, various off-axis dispersion controlling optical devices could be realized.
  • 加载中
  • [1] Yang C A, Edwards P, Shi K B, Liu Z W. Proposal and demonstration of a spectrometer using a diffractive optical element with dual dispersion and focusing functionality. Opt Lett 36, 2023-2025 (2011). doi: 10.1364/OL.36.002023

    CrossRef Google Scholar

    [2] Gong Y D, Li T J, Jian S S. Multi-channel fiber grating for DWDM. Chin J Electron 9, 292-295 (2000).

    Google Scholar

    [3] Stone T, George N. Hybrid diffractive-refractive lenses and achromats. Appl Opt 27, 2960-2971 (1988). doi: 10.1364/AO.27.002960

    CrossRef Google Scholar

    [4] Luo X G, Tsai D, Gu M, Hong M H. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 48, 2458-2494 (2019). doi: 10.1039/c8cs00864g

    CrossRef Google Scholar

    [5] Luo X G, Tsai D, Gu M, Hong M H. Subwavelength interference of light on structured surfaces. Adv Opt Photonics 10, 757-842 (2018). doi: 10.1364/AOP.10.000757

    CrossRef Google Scholar

    [6] Nemati A, Wang Q, Hong M H, Teng J H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018). doi: 10.29026/oea.2018.180009

    CrossRef Google Scholar

    [7] Luo X G. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31, 1804680 (2019). doi: 10.1002/adma.201804680

    CrossRef Google Scholar

    [8] Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139-150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [9] Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). doi: 10.29026/oea.2018.180021

    CrossRef Google Scholar

    [10] Guo Y H, Pu M B, Zhao Z Y, Wang Y Q, Jin J J et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022-2029 (2016). doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [11] Jin J J, Pu M B, Wang Y Q, Li X, Ma X L et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv Mater Technol 2, 1600201 (2017). doi: 10.1002/admt.201600201

    CrossRef Google Scholar

    [12] Pu M B, Li X, Ma X L, Wang Y Q, Zhao Z Y et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [13] Li X, Chen L W, Li Y, Zhang X H, Pu M B et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [14] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun 7, 12533 (2016). doi: 10.1038/ncomms12533

    CrossRef Google Scholar

    [15] Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308-312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [16] Ma X L, Pu M B, Li X, Guo Y H, Luo X G. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019).

    Google Scholar

    [17] Khorasaninejad M, Shi Z, Zhu A Y, Chen W T, Sanjeev V et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17, 1819-1824 (2017). doi: 10.1021/acs.nanolett.6b05137

    CrossRef Google Scholar

    [18] Chen B H, Wu P C, Su V C, Lai Y C, Chu C H et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett 17, 6345-6352 (2017). doi: 10.1021/acs.nanolett.7b03135

    CrossRef Google Scholar

    [19] Pu M B, Li X, Guo Y H, Ma X L, Luo X G. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471-31477 (2017). doi: 10.1364/OE.25.031471

    CrossRef Google Scholar

    [20] Ni X J, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310-1314 (2015). doi: 10.1126/science.aac9411

    CrossRef Google Scholar

    [21] Pu M B, Zhao Z Y, Wang Y Q, Li X, Ma X L et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci Rep 5, 9822 (2015). doi: 10.1038/srep09822

    CrossRef Google Scholar

    [22] Xie X, Li X, Pu M B, Ma X L, Liu K P et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv Funct Mater 28, 1706673 (2018). doi: 10.1002/adfm.201706673

    CrossRef Google Scholar

    [23] Xie X, Pu M B, Huang Y J, Ma X L, Li X et al. Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field. Adv Mater Technol 4, 1800612 (2019). doi: 10.1002/admt.201800612

    CrossRef Google Scholar

    [24] Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination. Science 332, 218-220 (2011). doi: 10.1126/science.1201045

    CrossRef Google Scholar

    [25] Li K, Guo Y H, Pu M B, Li X, Ma X L et al. Dispersion controlling meta-lens at visible frequency. Opt Express 25, 21419-21427 (2017). doi: 10.1364/OE.25.021419

    CrossRef Google Scholar

    [26] Lin D M, Holsteen A L, Maguid E, Wetzstein G, Kik P G et al. Photonic multitasking interleaved si nanoantenna phased array. Nano Lett 16, 7671-7676 (2016). doi: 10.1021/acs.nanolett.6b03505

    CrossRef Google Scholar

    [27] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628-633 (2016). doi: 10.1364/OPTICA.3.000628

    CrossRef Google Scholar

    [28] Khorasaninejad M, Chen W T, Oh J, Capasso F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett 16, 3732-3737 (2016). doi: 10.1021/acs.nanolett.6b01097

    CrossRef Google Scholar

    [29] Shi Z J, Khorasaninejad M, Huang Y W, Roques-Carmes C, Zhu A Y et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett 18, 2420-2427 (2018). doi: 10.1021/acs.nanolett.7b05458

    CrossRef Google Scholar

    [30] Fan Q B, Zhu W Q, Liang Y Z, Huo P C, Zhang C et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Lett 19, 1158-1165 (2019). doi: 10.1021/acs.nanolett.8b04571

    CrossRef Google Scholar

    [31] Fan Q B, Huo P C, Wang D P, Liang Y Z, Yan F et al. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays. Sci Rep 7, 45044 (2017). doi: 10.1038/srep45044

    CrossRef Google Scholar

    [32] Deng Z L, Zhang S, Wang G P. Wide-angled off-axis achromatic metasurfaces for visible light. Opt Express 24, 23118-23128 (2016). doi: 10.1364/OE.24.023118

    CrossRef Google Scholar

    [33] Liu S, Zhang L, Yang Q L, Xu Q, Yang Y et al. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Adv Opt Mater 4, 1965-1973 (2016). doi: 10.1002/adom.201600471

    CrossRef Google Scholar

    [34] Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016). doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [35] The working principle of DMD. (last accessed December 3, 2018); http://www.ti.com.cn/product/cn/dlp480re/

    Google Scholar

    [36] Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters. Appl Opt 32, 2606-2613 (1993). doi: 10.1364/AO.32.002606

    CrossRef Google Scholar

    [37] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs. Phys Rev B 65, 235112 (2002). doi: 10.1103/PhysRevB.65.235112

    CrossRef Google Scholar

  • Supplementary information for Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(12341) PDF downloads(3995) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint