Citation: | Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035 |
[1] | Dumanli A G, Savin T. Recent advances in the biomimicry of structural colours. Chem Soc Rev 45, 6698-6724 (2016). doi: 10.1039/C6CS00129G |
[2] | Kumar C S S R. Biomimetic and Bioinspired Nanomaterials (Wiley, Weinheim, 2010). |
[3] | lida M, Hagiwara K, Asakura H. Holographic fourier diffraction gratings with a high diffraction efficiency optimized for optical communication systems. Appl Opt 31, 3015-3019 (1992). doi: 10.1364/AO.31.003015 |
[4] | Loewen E G, Popov E. Diffraction Gratings and Applications (M. Dekker, New York, 1997). |
[5] | Rößler F, Kunze T, Lasagni A F. Fabrication of diffraction based security elements using direct laser interference patterning. Opt Express 25, 22959-22970 (2017). doi: 10.1364/OE.25.022959 |
[6] | Mahalik N P, Micromanufacturing and nanotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. |
[7] | Singh S. Diffraction gratings: aberrations and applications. Opt Laser Technol 31, 195-218 (1999). doi: 10.1016/S0030-3992(99)00019-5 |
[8] | Saito A, Miyamura Y, Nakajima M, Ishikawa Y Sogo K et al. Reproduction of the Morpho blue by nanocasting lithography. J Vac Sci Technol B 24, 3248-3251 (2006). doi: 10.1116/1.2395950 |
[9] | Watanabe K, Hoshino T, Kanda K, Haruyama Y, Matsui S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn J Appl Phys 44, L48-L50 (2005). |
[10] | Dusser B, Sagan Z, Soder H, Faure N, Colombier J P et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18, 2913-2924 (2010). doi: 10.1364/OE.18.002913 |
[11] | Tamamura Y, Miyaji G. Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation. Opt Mater Express 9, 2902-2909 (2019). doi: 10.1364/OME.9.002902 |
[12] | Voisiat B, Wang W, Holzhey M, Lasagni A F. Improving the homogeneity of diffraction based colours by fabricating periodic patterns with gradient spatial period using Direct Laser Interference Patterning. Sci Rep 9, 7801 (2019). doi: 10.1038/s41598-019-44212-4 |
[13] | Birnbaum M. Semiconductor surface damage produced by Ruby lasers. J Appl Phys 36, 3688-3689 (1965). doi: 10.1063/1.1703071 |
[14] | Clark S E, Emmony D C. Ultraviolet-laser-induced periodic surface structures. Phys Rev B 40, 2031-2041 (1989). doi: 10.1103/PhysRevB.40.2031 |
[15] | Fauchet P M, Siegman A E. Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl Phys Lett 40, 824-826 (1982). doi: 10.1063/1.93274 |
[16] | Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7, 385-407 (2013). doi: 10.1002/lpor.201200017 |
[17] | Papadopoulos A, Skoulas E, Mimidis A, Perrakis G, Kenanakis G et al. Biomimetic Omnidirectional Antireflective Glass via Direct Ultrafast Laser Nanostructuring. Adv. Mater 31, 1901123 (2019). |
[18] | Tsibidis G D, Fotakis C, Stratakis E. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B 92, 041405(R) (2015). doi: 10.1103/PhysRevB.92.041405 |
[19] | Rudenko A, Colombier J P, Itina T E. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys Rev B 93, 075427 (2016). doi: 10.1103/PhysRevB.93.075427 |
[20] | Wang L, Xu B B, Cao X W, Li Q K, Tian W J et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica 4, 637-642 (2017). doi: 10.1364/OPTICA.4.000637 |
[21] | Bonse J, Höhm S, Kirner S V, Rosenfeld A, Krüger J. Laser-induced periodic surface structures—A scientific evergreen. IEEE J Sel Top Quant Electron 23, 9000615 (2017). |
[22] | Öktem B, Pavlov I, Ilday S, Kalaycıoğlu H, Rybak A et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat Photonics 7, 897-901 (2013). doi: 10.1038/nphoton.2013.272 |
[23] | Jin Y, Allegre O J, Perrie W, Abrams K, Ouyang J et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express 21, 25333-25353 (2013). doi: 10.1364/OE.21.025333 |
[24] | Li G Q, Li J W, Hu Y L, Zhang C C, Li X H et al. Realization of diverse displays for multiple color patterns on metal surfaces. Appl Surf Sci 316, 451-455 (2014). doi: 10.1016/j.apsusc.2014.08.030 |
[25] | Skoulas E, Manousaki A, Fotakis C, Stratakis E. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep 7, 45114 (2017). doi: 10.1038/srep45114 |
[26] | Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63, 109-115 (1996). doi: 10.1007/BF01567637 |
[27] | Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92, 041914 (2008). doi: 10.1063/1.2834902 |
[28] | Vorobyev A Y, Guo C L. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. J Appl Phys 103, 043513 (2008). doi: 10.1063/1.2842403 |
[29] | Li G Q, Li J W, Yang L, Li X H, Hu Y L et al. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci 276, 203-209 (2013). doi: 10.1016/j.apsusc.2013.03.067 |
[30] | Ionin A A, Kudryashov S I, Makarov S V, Seleznev L V, Sinitsyn D V et al. Femtosecond laser color marking of metal and semiconductor surfaces. Appl Phys A 107, 301-305 (2012). |
[31] | Ahsan M S, Ahmed F, Kim Y G, Lee M S, Jun M B G. Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl Surf Sci 257, 7771-7777 (2011). doi: 10.1016/j.apsusc.2011.04.027 |
[32] | Gnilitskyi I, Derrien T J Y, Levy Y, Bulgakova N M, Mocek T, Orazi L. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci Rep 7, 8485 (2017). doi: 10.1038/s41598-017-08788-z |
[33] | Wang L, Chen Q D, Cao X W, Buividas R, Wang X W et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light: Sci Appl 6, e17112 (2017). doi: 10.1038/lsa.2017.112 |
[34] | Højlund-Nielsen E, Weirich J, Nørregaard J, Garnaes J, Mortensen N A et al. Angle-independent structural colors of silicon. J Nanophotonics 8, 083988 (2014). doi: 10.1117/1.JNP.8.083988 |
[35] | Yetisen A K, Butt H, Mikulchyk T, Ahmed R, Montelongo Y et al. Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security. Adv Opt Mater 4, 1589-1600 (2016). doi: 10.1002/adom.201600162 |
[36] | Yao J W, Zhang C Y, Liu H Y, Dai Q F, Wu L J et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci 258, 7625-7632 (2012). doi: 10.1016/j.apsusc.2012.04.105 |
[37] | Jwad T, Penchev P, Nasrollahi V, Dimov S. Laser induced ripples' gratings with angular periodicity for fabrication of diffraction holograms. Appl Surf Sci 453, 449-456 (2018). doi: 10.1016/j.apsusc.2018.04.277 |
[38] | Romano J M, Garcia-Giron A, Penchev P, Dimov S. Triangular laser-induced submicron textures for functionalising stainless steel surfaces. Appl Surf Sci 440, 162-169 (2018). doi: 10.1016/j.apsusc.2018.01.086 |
[39] | Torres R, Kaempfe T, Delaigue M, Parriaux O, Hönninger C et al. Influence of laser beam polarization on laser micro-machining of molybdenum. JLMN-J Laser Micro/Nanoeng 8, 188-191 (2013). doi: 10.2961/jlmn.2013.03.0001 |
[40] | Beresna M, Gecevičius M, Kazansky P G, Gertus T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett 98, 201101 (2011). doi: 10.1063/1.3590716 |
[41] | Nivas J J J, He S T, Rubano A, Vecchione A, Paparo D et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci Rep 5, 17929 (2015). doi: 10.1038/srep17929 |
[42] | Nivas J J J, He S T, Song Z M, Rubano A, Vecchione A et al. Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams. Appl Surf Sci 418, 565-571 (2017). doi: 10.1016/j.apsusc.2016.10.162 |
[43] | Tsibidis G D, Skoulas E, Stratakis E. Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt Lett 40, 5172-5175 (2015). doi: 10.1364/OL.40.005172 |
[44] | Hecht E. Optics 4th ed (Addison-Wesley, San Francisco, 2001). |
[45] | Palmer C. Diffraction Grating Handbook 6th ed (Newport Corporation, Rochester, NY, 2005). |
The experimental setup used for surface structuring.
(a) Experimental setup and geometry used for the evaluation of surface diffraction properties. (b) Typical intensity plot of the white light spectrum. (c) Schematic illustration of the structural color monitoring system. (d) The respective coordination parameters.
LSFL periodicity dependence on the laser fluence (a), and the effective number of pulses (b), for linearly (squares) and radially (circles) polarized fs beams. Top-view SEM images of areas produced upon irradiation using linearly (c, d) and radially (e, f) polarized fs beams.
Top-view SEM images of areas produced upon irradiation using linearly (a–c) and radially (d–f) polarized fs beams.
Schematic illustration of the structural colors observed the S1 (a) and the S2 (b) sample series respectively; 2D-FFT patterns corresponding to the S1 (c) and the S2 (e) sample series respectively. The corresponding intensity plots of the 2D-FFT patterns in four different directions (denoted as '1' to '4') are depicted in (d) and (f) respectively.
(a) Diffracted colors of S1 surfaces obtained upon irradiation with linearly polarized fs beam. (b) Diffracted colors of S2 surfaces obtained upon irradiation with radially polarized fs beam. Each color is characterized by the coordinates (ω, φ+θ, β), as defined by the optical system used for their monitoring.