Citation: | Zhang C J, Zhang C Y, Zhang Z L, He T, Mi X H et al. Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation. Opto-Electron Adv 3, 190045 (2020). doi: 10.29026/oea.2020.190045 |
[1] | Wu Y M, Xu J H, Poh E T, Liang L L, Liu H L et al. Upconversion superburst with sub-2 μs lifetime. Nat Nanotechnol 14, 1110-1115 (2019). doi: 10.1038/s41565-019-0560-5 |
[2] | Zhu X H, Zhang J, Liu J L, Zhang Y. Recent progress of rare- earth doped upconversion nanoparticles: synthesis, optimization, and applications. Adv Sci 6, 1901358 (2019). doi: 10.1002/advs.201901358 |
[3] | Chan E M. Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. Chem Soc Rev 44, 1653-1679 (2015). doi: 10.1039/C4CS00205A |
[4] | Xu W, Chen X, Song H W. Upconversion manipulation by local electromagnetic field. Nano Today 17, 54-78 (2017). doi: 10.1016/j.nantod.2017.10.011 |
[5] | Zhou B, Shi B Y, Jin D Y, Liu X G. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10, 924-936 (2015). doi: 10.1038/nnano.2015.251 |
[6] | Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38, 976-989 (2009). doi: 10.1039/b809132n |
[7] | Gu Y Y, Guo Z Y, Yuan W, Kong M Y, Liu Y L et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat Photonics 13, 525-531 (2019). doi: 10.1038/s41566-019-0437-z |
[8] | Han S Y, Deng R R, Xie X J, Liu X G. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed Engl 53, 11702-11715 (2014). doi: 10.1002/anie.201403408 |
[9] | Liu G K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem Soc Rev 44, 1635-1652 (2015). doi: 10.1039/C4CS00187G |
[10] | Zhao J B, Jin D Y, Schartner E P, Lu Y Q, Liu Y Q et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 8, 729-734 (2013). doi: 10.1038/nnano.2013.171 |
[11] | Aouani H, Mahboub O, Bonod N, Devaux E, Popov E et al. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett 11, 637-644 (2011). doi: 10.1021/nl103738d |
[12] | Hu Y Q, Shao Q Y, Dong Y, Jiang J Q. Energy loss mechanism of upconversion core/shell nanocrystals. J Phys Chem C 123, 22674-22679 (2019). doi: 10.1021/acs.jpcc.9b07176 |
[13] | Wang F, Han Y, Lim C S, Lu Y H, Wang J et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061-1065 (2010). doi: 10.1038/nature08777 |
[14] | Mao C C, Min K, Bae K, Cho S, Xu T et al. Enhanced upconversion luminescence by two-dimensional photonic crystal structure. ACS Photonics 6, 1882-1888 (2019). doi: 10.1021/acsphotonics.9b00756 |
[15] | Bulgarini G, Reimer M E, Bouwes Bavinck M, Jöns K D, Dalacu D et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett 14, 4102-4106 (2014). doi: 10.1021/nl501648f |
[16] | Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P et al. Directional light emission from propagating surface plasmons of silver nanowires. Nano Lett 9, 4383-4386 (2009). doi: 10.1021/nl902651e |
[17] | Shegai T, Chen S, Miljković V D, Zengin G, Johansson P et al. A bimetallic nanoantenna for directional colour routing. Nat Commun 2, 481 (2011). doi: 10.1038/ncomms1490 |
[18] | Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J et al. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11, 1676-1680 (2011). doi: 10.1021/nl200179y |
[19] | Wang Z X, Wei H, Pan D, Xu H X. Controlling the radiation direction of propagating surface plasmons on silver nanowires. Laser Photonics Rev 8, 596-601 (2014). doi: 10.1002/lpor.201300215 |
[20] | Mongillo M, Spathis P, Katsaros G, Gentile P, De Franceschi S. Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett 12, 3074-3079 (2012). doi: 10.1021/nl300930m |
[21] | Huang S Z, Chen H, He T, Zhang C J, Zhang C Y et al. High-performance upconversion luminescent waveguide using a rare-earth doped microtube with beveled ends. J Mater Chem C 7, 12704-12708 (2019). doi: 10.1039/C9TC04373J |
[22] | Han Q Y, Zhang C Y, Wang C, Wang Z J, Li C X et al. Unique adjustable UC luminescence pattern and directional radiation of peculiar-shaped NaYF4: Yb3+/Er3+ microcrystal particle. Sci Rep 7, 5371 (2017). doi: 10.1038/s41598-017-04519-6 |
[23] | Haas J, Catalan E V, Piron P, Karlsson M, Mizaikoff B. Infrared spectroscopy based on broadly tunable quantum cascade lasers and polycrystalline diamond waveguides. Analyst 143, 5112-5119 (2018). doi: 10.1039/C8AN00919H |
[24] | Bing C, Sun T Y, Qiao X S, Fan X P, Wang F. Directional light emission in a single NaYF4 microcrystal via photon upconversion. Adv Opt Mater 3, 1577-1581 (2015). doi: 10.1002/adom.201500246 |
[25] | Xu W, Lee T K, Moon B S, Zhou D L, Song H W et al. Spectral and spatial characterization of upconversion luminescent nanocrystals as nanowaveguides. Nanoscale 9, 9238-9245 (2017). doi: 10.1039/C7NR01745F |
[26] | Debije M G, Verbunt P P C, Rowan B C, Richards B S, Optics T L. Measured surface loss from luminescent solar concentrator waveguides. Appl Opt 47, 6763-6768 (2008). doi: 10.1364/AO.47.006763 |
[27] | Luan L, Sievert P R, Mu W, Hong Z, Ketterson J B. Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film. New J Phys 10, 073012 (2008). doi: 10.1088/1367-2630/10/7/073012 |
[28] | Dai D X, Wang Z, Bauters J F, Tien M C, Heck M J R et al. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt Express 19, 14130-14136 (2011). doi: 10.1364/OE.19.014130 |
[29] | Dong B, Hua R N, Cao B S, Li Z P, He Y Y et al. Size dependence of the upconverted luminescence of NaYF4:Er, Yb microspheres for use in ratiometric thermometry. Phys Chem Chem Phys 16, 20009-20012 (2014). doi: 10.1039/C4CP01966K |
[30] | Du P, Deng A M, Luo L H, Yu J S. Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for a non-invasion optical thermometer. New J Chem 41, 13855-13861(2017). doi: 10.1039/C7NJ03165C |
[31] | Sokolov V I, Zvyagin A V, Igumnov S M, Molchanova S I, Nazarov M M et al. Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry. Opt Spectrosc 118, 609-613 (2015). doi: 10.1134/S0030400X15040190 |
[32] | Han Q Y, Gao W, Zhang C Y, Mi X H, Zhao X et al. Tunable flower-like upconversion emission and directional red radiation in a single NaYF4:Yb3+/Tm3+ microcrystal particle. J Alloy Compd 748, 252-257 (2018). doi: 10.1016/j.jallcom.2018.02.322 |
Supplementary information for Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation |
Schematic of the directional UC emission of crown-shaped NaYF4:Yb3+/Er3+ under an excitation of 980 nm and the experimental and simulated UC luminescent patterns.
(a–b) SEM images of NaYF4:Yb3+/Er3+ microparticles, the cross-section of single microparticle shown in the inset image in (b). (c) Element mapping of a single NaYF4:Yb3+/Er3+ microparticle. (d) XRD pattern of the particles and standard pattern of the hexagonal phases of NaYF4.
(a–b) UC fluorescence patterns and spectra obtained through change excitation position from the center to corner/edge. (c) Energy-level diagram and possible transitions/emission schemes of Yb3+ and Er3+.
(a–e) UC luminescence patterns of total (a), green (b), and red (c) emissions, the simulation pattern (d), and possible propagation/emission mode (e) of single NaYF4:Yb3+/Er3+ under excited conditions on the middle. (f–j) UC luminescence patterns of total (f), green (g), and red (h) emissions, the simulation pattern (i), and possible propagation/emission modes (j) of single NaYF4:Yb3+/Er3+ under off-centered excitation.
The directional emission of the luminescent waveguide with center (a–d) and off-center excitations (upward offset, e–h, and downward offset, i–l).(a, e, i) optical pattern on the image plane, in which the excitation and collection positions were marked with red and white circles, (b, f, g) experimental and (c, g, k) simulated Fourier images of the selected region, and (d, h, i) the angular intensity distribution of radiation on the Fourier plane taken along the direction, where θ has maximum intensity. The insert images show the φ distributions on the Fourier plane.