Zhang C J, Zhang C Y, Zhang Z L, He T, Mi X H et al. Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation. Opto-Electron Adv 3, 190045 (2020). doi: 10.29026/oea.2020.190045
Citation: Zhang C J, Zhang C Y, Zhang Z L, He T, Mi X H et al. Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation. Opto-Electron Adv 3, 190045 (2020). doi: 10.29026/oea.2020.190045

Original Article Open Access

Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation

More Information
  • Near-infrared excited rare-earth (RE)-doped up-conversion (UC)-luminescent materials have attracted enormous attention because of their unique emission properties, such as narrow emission bands, long luminescence lifetimes, and multiple colors. However, current development of RE-doped luminescent material is hindered by weak and narrowband absorption problems and low photon-conversion quantum efficiencies. In addition to conventional approaches to enhance fluorescence intensity, controlling emission directivity to improve detection efficiency has become a promising approach to obtain higher luminescence brightnesses. In this paper, a self-suspended RE-doped UC luminescent waveguide is designed to realize directional emissions. Benefitting from the special morphology of the crown-like NaYF4:Yb3+/Er3+ microparticle, the points contact between the waveguide and substrate can be obtained to decrease energy loss. An attractive UC luminescent pattern accompanied by powerful and controllable directional emissions is observed, and the spatial emission angle and intensity distribution are explored and analyzed in detail by introducing Fourier imaging detection and simulation. This work provides a new method for achieving controllable directional fluorescence emissions and obtaining improved detection efficiency by narrowing emission directivity, which has potential applications in 3-dimensional displays and micro-optoelectronic devices, especially when fabricating self-fluorescence micron lasers.
  • 加载中
  • [1] Wu Y M, Xu J H, Poh E T, Liang L L, Liu H L et al. Upconversion superburst with sub-2 μs lifetime. Nat Nanotechnol 14, 1110-1115 (2019). doi: 10.1038/s41565-019-0560-5

    CrossRef Google Scholar

    [2] Zhu X H, Zhang J, Liu J L, Zhang Y. Recent progress of rare- earth doped upconversion nanoparticles: synthesis, optimization, and applications. Adv Sci 6, 1901358 (2019). doi: 10.1002/advs.201901358

    CrossRef Google Scholar

    [3] Chan E M. Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. Chem Soc Rev 44, 1653-1679 (2015). doi: 10.1039/C4CS00205A

    CrossRef Google Scholar

    [4] Xu W, Chen X, Song H W. Upconversion manipulation by local electromagnetic field. Nano Today 17, 54-78 (2017). doi: 10.1016/j.nantod.2017.10.011

    CrossRef Google Scholar

    [5] Zhou B, Shi B Y, Jin D Y, Liu X G. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10, 924-936 (2015). doi: 10.1038/nnano.2015.251

    CrossRef Google Scholar

    [6] Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38, 976-989 (2009). doi: 10.1039/b809132n

    CrossRef Google Scholar

    [7] Gu Y Y, Guo Z Y, Yuan W, Kong M Y, Liu Y L et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat Photonics 13, 525-531 (2019). doi: 10.1038/s41566-019-0437-z

    CrossRef Google Scholar

    [8] Han S Y, Deng R R, Xie X J, Liu X G. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed Engl 53, 11702-11715 (2014). doi: 10.1002/anie.201403408

    CrossRef Google Scholar

    [9] Liu G K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem Soc Rev 44, 1635-1652 (2015). doi: 10.1039/C4CS00187G

    CrossRef Google Scholar

    [10] Zhao J B, Jin D Y, Schartner E P, Lu Y Q, Liu Y Q et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 8, 729-734 (2013). doi: 10.1038/nnano.2013.171

    CrossRef Google Scholar

    [11] Aouani H, Mahboub O, Bonod N, Devaux E, Popov E et al. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett 11, 637-644 (2011). doi: 10.1021/nl103738d

    CrossRef Google Scholar

    [12] Hu Y Q, Shao Q Y, Dong Y, Jiang J Q. Energy loss mechanism of upconversion core/shell nanocrystals. J Phys Chem C 123, 22674-22679 (2019). doi: 10.1021/acs.jpcc.9b07176

    CrossRef Google Scholar

    [13] Wang F, Han Y, Lim C S, Lu Y H, Wang J et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061-1065 (2010). doi: 10.1038/nature08777

    CrossRef Google Scholar

    [14] Mao C C, Min K, Bae K, Cho S, Xu T et al. Enhanced upconversion luminescence by two-dimensional photonic crystal structure. ACS Photonics 6, 1882-1888 (2019). doi: 10.1021/acsphotonics.9b00756

    CrossRef Google Scholar

    [15] Bulgarini G, Reimer M E, Bouwes Bavinck M, Jöns K D, Dalacu D et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett 14, 4102-4106 (2014). doi: 10.1021/nl501648f

    CrossRef Google Scholar

    [16] Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P et al. Directional light emission from propagating surface plasmons of silver nanowires. Nano Lett 9, 4383-4386 (2009). doi: 10.1021/nl902651e

    CrossRef Google Scholar

    [17] Shegai T, Chen S, Miljković V D, Zengin G, Johansson P et al. A bimetallic nanoantenna for directional colour routing. Nat Commun 2, 481 (2011). doi: 10.1038/ncomms1490

    CrossRef Google Scholar

    [18] Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J et al. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11, 1676-1680 (2011). doi: 10.1021/nl200179y

    CrossRef Google Scholar

    [19] Wang Z X, Wei H, Pan D, Xu H X. Controlling the radiation direction of propagating surface plasmons on silver nanowires. Laser Photonics Rev 8, 596-601 (2014). doi: 10.1002/lpor.201300215

    CrossRef Google Scholar

    [20] Mongillo M, Spathis P, Katsaros G, Gentile P, De Franceschi S. Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett 12, 3074-3079 (2012). doi: 10.1021/nl300930m

    CrossRef Google Scholar

    [21] Huang S Z, Chen H, He T, Zhang C J, Zhang C Y et al. High-performance upconversion luminescent waveguide using a rare-earth doped microtube with beveled ends. J Mater Chem C 7, 12704-12708 (2019). doi: 10.1039/C9TC04373J

    CrossRef Google Scholar

    [22] Han Q Y, Zhang C Y, Wang C, Wang Z J, Li C X et al. Unique adjustable UC luminescence pattern and directional radiation of peculiar-shaped NaYF4: Yb3+/Er3+ microcrystal particle. Sci Rep 7, 5371 (2017). doi: 10.1038/s41598-017-04519-6

    CrossRef Google Scholar

    [23] Haas J, Catalan E V, Piron P, Karlsson M, Mizaikoff B. Infrared spectroscopy based on broadly tunable quantum cascade lasers and polycrystalline diamond waveguides. Analyst 143, 5112-5119 (2018). doi: 10.1039/C8AN00919H

    CrossRef Google Scholar

    [24] Bing C, Sun T Y, Qiao X S, Fan X P, Wang F. Directional light emission in a single NaYF4 microcrystal via photon upconversion. Adv Opt Mater 3, 1577-1581 (2015). doi: 10.1002/adom.201500246

    CrossRef Google Scholar

    [25] Xu W, Lee T K, Moon B S, Zhou D L, Song H W et al. Spectral and spatial characterization of upconversion luminescent nanocrystals as nanowaveguides. Nanoscale 9, 9238-9245 (2017). doi: 10.1039/C7NR01745F

    CrossRef Google Scholar

    [26] Debije M G, Verbunt P P C, Rowan B C, Richards B S, Optics T L. Measured surface loss from luminescent solar concentrator waveguides. Appl Opt 47, 6763-6768 (2008). doi: 10.1364/AO.47.006763

    CrossRef Google Scholar

    [27] Luan L, Sievert P R, Mu W, Hong Z, Ketterson J B. Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film. New J Phys 10, 073012 (2008). doi: 10.1088/1367-2630/10/7/073012

    CrossRef Google Scholar

    [28] Dai D X, Wang Z, Bauters J F, Tien M C, Heck M J R et al. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt Express 19, 14130-14136 (2011). doi: 10.1364/OE.19.014130

    CrossRef Google Scholar

    [29] Dong B, Hua R N, Cao B S, Li Z P, He Y Y et al. Size dependence of the upconverted luminescence of NaYF4:Er, Yb microspheres for use in ratiometric thermometry. Phys Chem Chem Phys 16, 20009-20012 (2014). doi: 10.1039/C4CP01966K

    CrossRef Google Scholar

    [30] Du P, Deng A M, Luo L H, Yu J S. Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for a non-invasion optical thermometer. New J Chem 41, 13855-13861(2017). doi: 10.1039/C7NJ03165C

    CrossRef Google Scholar

    [31] Sokolov V I, Zvyagin A V, Igumnov S M, Molchanova S I, Nazarov M M et al. Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry. Opt Spectrosc 118, 609-613 (2015). doi: 10.1134/S0030400X15040190

    CrossRef Google Scholar

    [32] Han Q Y, Gao W, Zhang C Y, Mi X H, Zhao X et al. Tunable flower-like upconversion emission and directional red radiation in a single NaYF4:Yb3+/Tm3+ microcrystal particle. J Alloy Compd 748, 252-257 (2018). doi: 10.1016/j.jallcom.2018.02.322

    CrossRef Google Scholar

  • Supplementary information for Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint