Chen Q, Liang L, Zheng Q L, Zhang Y X, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040
Citation: Chen Q, Liang L, Zheng Q L, Zhang Y X, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040

Original Article Open Access

On-chip readout plasmonic mid-IR gas sensor

More Information
  • Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change. Here a novel mid-IR plasmonic gas sensor with on-chip direct readout is proposed based on unity integration of narrowband spectral response, localized field enhancement and thermal detection. A systematic investigation consisting of both optical and thermal simulations for gas sensing is presented for the first time in three sensing modes including refractive index sensing, absorption sensing and spectroscopy, respectively. It is found that a detection limit less than 100 ppm for CO2 could be realized by a combination of surface plasmon resonance enhancement and metal-organic framework gas enrichment with an enhancement factor over 8000 in an ultracompact optical interaction length of only several microns. Moreover, on-chip spectroscopy is demonstrated with the compressive sensing algorithm via a narrowband plasmonic sensor array. An array of 80 such sensors with an average resonance linewidth of 10 nm reconstructs the CO2 molecular absorption spectrum with the estimated resolution of approximately 0.01 nm far beyond the state-of-the-art spectrometer. The novel device design and analytical method are expected to provide a promising technique for extensive applications of distributed or portable mid-IR gas sensor.
  • 加载中
  • [1] Gibson D, MacGregor C. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment. Sensors 13, 7079-7103 (2013). doi: 10.3390/s130607079

    CrossRef Google Scholar

    [2] Caron A, Redon N, Thevenet F, Hanoune B, Coddeville P. Performances and limitations of electronic gas sensors to investigate an indoor air quality event. Build Environ 107, 19-28 (2016). doi: 10.1016/j.buildenv.2016.07.006

    CrossRef Google Scholar

    [3] Narayanan S, Rice G, Agah M. A micro-discharge photoionization detector for micro-gas chromatography. Microchim Acta 181, 493-499 (2014). doi: 10.1007/s00604-013-1146-9

    CrossRef Google Scholar

    [4] Barreca D, Bekermann D, Comini E, Devi A, Fischer R A et al. 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases. Sens Actuators B: Chem 149, 1-7 (2010). doi: 10.1016/j.snb.2010.06.048

    CrossRef Google Scholar

    [5] Güntner A T, Pineau N J, Chie D, Krumeich F, Pratsinis S E. Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4, 5358-5366 (2016). doi: 10.1039/C6TB01335J

    CrossRef Google Scholar

    [6] Priyanka K P, Vattappalam S C, Sankararaman S, Balakrishna K M, Varghese T. High-performance ethanol gas sensor using TiO2 nanostructures. Eur Phys J Plus 132, 306 (2017). doi: 10.1140/epjp/i2017-11581-x

    CrossRef Google Scholar

    [7] Liu X, Cheng S T, Liu H, Hu S, Zhang D Q et al. A survey on gas sensing technology. Sensors 12, 9635-9665 (2012). doi: 10.3390/s120709635

    CrossRef Google Scholar

    [8] Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K. Effect of water vapor on Pd-Loaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interfaces 7, 5863-5869 (2015). doi: 10.1021/am509082w

    CrossRef Google Scholar

    [9] Piriya V S A, Joseph P, Daniel S C G K, Lakshmanan S, Kinoshita T et al. Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng: C 78, 1231-1245 (2017). doi: 10.1016/j.msec.2017.05.018

    CrossRef Google Scholar

    [10] Wang S Y, Ma J Y, Li Z J, Su H Q, Alkurd N R et al. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. J Hazard Mater 285, 368-374 (2015). doi: 10.1016/j.jhazmat.2014.12.014

    CrossRef Google Scholar

    [11] Lochbaum A, Fedoryshyn Y, Dorodnyy A, Koch U, Hafner C et al. On-chip narrowband thermal emitter for Mid-IR optical gas sensing. ACS Photonics 4, 1371-1380 (2017). doi: 10.1021/acsphotonics.6b01025

    CrossRef Google Scholar

    [12] Zheng Y, Wu Z F, Shum P P, Xu Z L, Keiser G et al. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron Adv 1, 180015 (2018).

    Google Scholar

    [13] Deng C S, Li M J, Peng J, Liu W L, Zhong J X. Simultaneously high-Q and high-sensitivity slotted photonic crystal nanofiber cavity for complex refractive index sensing. J Opt Soc Am B 34, 1624-1631 (2017). doi: 10.1364/JOSAB.34.001624

    CrossRef Google Scholar

    [14] Moumen S, Raible I, Krauß A, Wöllenstein J. Infrared investigation of CO2 sorption by amine based materials for the development of a NDIR CO2 sensor. Sens Actuators B: Chem 236, 1083-1090 (2016). doi: 10.1016/j.snb.2016.06.014

    CrossRef Google Scholar

    [15] Lackner M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries-a review. Rev Chem Eng 23, 65 (2007).

    Google Scholar

    [16] Tong J C, Suo F, Ma J H Z, Tobing L Y M, Qian L et al. Surface plasmon enhanced infrared photodetection. Opto-Electron Adv 2, 180026 (2019).

    Google Scholar

    [17] Bingham J M, Anker J N, Kreno L E, Van Duyne R P. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132, 17358-17359 (2010). doi: 10.1021/ja1074272

    CrossRef Google Scholar

    [18] Jágerská J, Le Thomas N, Zhang H, Diao Z, Houdre R. Refractive index gas sensing in a hollow photonic crystal cavity. In Proceedings of 2010 12th International Conference on Transparent Optical Networks 1-4 (IEEE, 2010); http://doi.org/10.1109/ICTON.2010.5549037.

    Google Scholar

    [19] Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance. Sens Actuators 3, 79-88 (1982-1983).

    Google Scholar

    [20] Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10, 631-636 (2011). doi: 10.1038/nmat3029

    CrossRef Google Scholar

    [21] Allsop T, Arif R, Neal R, Kalli K, Kundrát V et al. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures. Light: Sci Appl 5, e16036 (2016). doi: 10.1038/lsa.2016.36

    CrossRef Google Scholar

    [22] Li Y X, Chen N, Deng D Y, Xing X X, Xiao X C et al. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens Actuators B: Chem 238, 264-273 (2017). doi: 10.1016/j.snb.2016.07.051

    CrossRef Google Scholar

    [23] Hasan D, Lee C. Hybrid metamaterial absorber platform for sensing of CO2 gas at Mid‐IR. Adv Sci 5, 1700581 (2018). doi: 10.1002/advs.201700581

    CrossRef Google Scholar

    [24] Werle P, Popov A. Application of antimonide lasers for gas sensing in the 3-4-µm range. Appl Opt 38, 1494-1501 (1999).

    Google Scholar

    [25] Charlton C, De Melas F, Inberg A, Croitoru N, Mizaikoff B. Hollow-waveguide gas sensing with room-temperature quantum cascade lasers. IEE Proc-Optoelectron 150, 306-309 (2003). doi: 10.1049/ip-opt:20030673

    CrossRef Google Scholar

    [26] Zhang Y, Gao W Z, Song Z Y, An Y P, Li L et al. Design of a novel gas sensor structure based on mid-infrared absorption spectrum. Sens Actuators B: Chem 147, 5-9 (2010). doi: 10.1016/j.snb.2009.11.044

    CrossRef Google Scholar

    [27] Liang L, Hu X, Wen L, Zhu Y H, Yang X G et al. Unity integration of grating slot waveguide and microfluid for terahertz sensing. Laser Photonics Rev 12, 1800078 (2018). doi: 10.1002/lpor.201800078

    CrossRef Google Scholar

    [28] Wen L, Liang L, Yang X G, Liu Z, Li B J et al. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrical readout in Au-Si nanojunctions. ACS Nano 13, 6963-6972 (2019). doi: 10.1021/acsnano.9b01914

    CrossRef Google Scholar

    [29] Hu X, Xu G Q, Wen L, Wang H C, Zhao Y C et al. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev 10, 962-969 (2016). doi: 10.1002/lpor.201600064

    CrossRef Google Scholar

    [30] Yesilkoy F, Arvelo E R, Jahani Y, Liu M K, Tittl A et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics 13, 390-396 (2019). doi: 10.1038/s41566-019-0394-6

    CrossRef Google Scholar

    [31] Matuschek M, Singh D P, Jeong H H, Nesterov M, Weiss T et al. Chiral plasmonic hydrogen sensors. Small 14, 1702990 (2018). doi: 10.1002/smll.201702990

    CrossRef Google Scholar

    [32] Tan Z X, Hao H, Shao Y H, Chen Y Z, Li X J et al. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt Express 22, 15049-15063 (2014). doi: 10.1364/OE.22.015049

    CrossRef Google Scholar

    [33] Chong X Y, Kim K J, Zhang Y J, Li E W, Ohodnicki P R et al. Plasmonic nanopatch array with integrated metal-organic framework for enhanced infrared absorption gas sensing. Nanotechnology 28, 26LT01 (2017).

    Google Scholar

    [34] Pusch A, De Luca A, Oh S S, Wuestner S, Roschuk T et al. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices. Sci Rep 5, 17451 (2015). doi: 10.1038/srep17451

    CrossRef Google Scholar

    [35] Tan X C, Li J Y, Yang A, Liu H, Yi F. Narrowband plasmonic metamaterial absorber integrated pyroelectric detectors towards infrared gas sensing. Proc SPIE 10536, 105361H (2018.)

    Google Scholar

    [36] Genner A, Gasser C, Moser H, Ofner J, Schreiber J et al. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology. Anal Bioanal Chem 409, 753-761 (2017). doi: 10.1007/s00216-016-0040-9

    CrossRef Google Scholar

    [37] Rück T, Bierl R, Matysik F M. Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level. Sens Actuators A: Phys 263, 501-509 (2017). doi: 10.1016/j.sna.2017.06.036

    CrossRef Google Scholar

    [38] Yin X K, Dong L, Wu H P, Zhang L, Ma W G et al. Highly sensitive photoacoustic multicomponent gas sensor for SF6 decomposition online monitoring. Opt Express 27, A224-A234 (2019). doi: 10.1364/OE.27.00A224

    CrossRef Google Scholar

    [39] Wen L, Chen Q, Hu X, Wang H C, Jin L, Su Q. Multifunctional silicon optoelectronics integrated with plasmonic scattering color. ACS Nano 10, 11076-11086 (2016). doi: 10.1021/acsnano.6b05960

    CrossRef Google Scholar

    [40] Delli E, Letka V, Hodgson P D, Repiso E, Hayton J P et al. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. ACS Photonics 6, 538-544 (2019). doi: 10.1021/acsphotonics.8b01550

    CrossRef Google Scholar

    [41] Sassi U, Parret R, Nanot S, Bruna M, Borini S et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat Commun 8, 14311 (2017). doi: 10.1038/ncomms14311

    CrossRef Google Scholar

    [42] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10, 2342-2348 (2010). doi: 10.1021/nl9041033

    CrossRef Google Scholar

    [43] Sobhani A, Knight M W, Wang Y M, Zheng B, King N S et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun 4, 1643 (2013). doi: 10.1038/ncomms2642

    CrossRef Google Scholar

    [44] Singh R, Cao W, Al-Naib I, Cong L Q, Withayachumnankul W et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl Phys Lett 105, 171101 (2014). doi: 10.1063/1.4895595

    CrossRef Google Scholar

    [45] Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett 91, 184102 (2007). doi: 10.1063/1.2805016

    CrossRef Google Scholar

    [46] Tamagnone M, Ambrosio A, Chaudhary K, Jauregui L A, Kim P et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci Adv 4, eaat7189 (2018). doi: 10.1126/sciadv.aat7189

    CrossRef Google Scholar

    [47] Qu C, Ma S J, Hao J M, Qiu M, Li X et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett 115, 235503 (2015). doi: 10.1103/PhysRevLett.115.235503

    CrossRef Google Scholar

    [48] Kocer H, Butun S, Banar B, Wang K, Tongay S et al. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl Phys Lett 106, 161104 (2015). doi: 10.1063/1.4918938

    CrossRef Google Scholar

    [49] Lv J, Que L C, Wei L H, Zhou Y, Liao B B et al. Uncooled microbolometer infrared focal plane array without substrate temperature stabilization. IEEE Sens J 14, 1533-1544 (2014). doi: 10.1109/JSEN.2014.2298512

    CrossRef Google Scholar

    [50] Niklaus F, Vieider C, Jakobsen H. MEMS-based uncooled infrared bolometer arrays: a review. Proc SPIE 6836, 68360D (2007).

    Google Scholar

    [51] Palik E D. Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).

    Google Scholar

    [52] Cheng F, Yang X D, Gao J. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt Lett 39, 3185-3188 (2014). doi: 10.1364/OL.39.003185

    CrossRef Google Scholar

    [53] Sherif S M, Swillam M A. Metal-less silicon plasmonic mid-infrared gas sensor. J Nanophotonics 10, 026025 (2016). doi: 10.1117/1.JNP.10.026025

    CrossRef Google Scholar

    [54] Ordonez-Miranda J, Ezzahri Y, Joulain K, Drevillon J, Alvarado-Gil J J. Modeling of the electrical conductivity, thermal conductivity, and specific heat capacity of VO2. Phys Rev B 98, 075144 (2018). doi: 10.1103/PhysRevB.98.075144

    CrossRef Google Scholar

    [55] Pevec S, Donlagic D. Miniature fiber-optic Fabry-Perot refractive index sensor for gas sensing with a resolution of 5×10−9 RIU. Opt Express 26, 23868-23882 (2018). doi: 10.1364/OE.26.023868

    CrossRef Google Scholar

    [56] Rogalski A. Progress in focal plane array technologies. Prog Quant Electron 36, 342-473 (2012).

    Google Scholar

    [57] Kreno L E, Hupp J T, Van Duyne R P. Metal−organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal Chem 82, 8042-8046 (2010). doi: 10.1021/ac102127p

    CrossRef Google Scholar

    [58] Chong X Y, Zhang Y J, Li E W, Kim K J, Ohodnicki P R et al. Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing. ACS Sens 3, 230-238 (2018). doi: 10.1021/acssensors.7b00891

    CrossRef Google Scholar

    [59] Thornton A W, Simon CM, Kim J, Kwon O, Deeg K S et al. Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem Mater 29, 2844-2854 (2017). doi: 10.1021/acs.chemmater.6b04933

    CrossRef Google Scholar

    [60] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F et al. The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer 110, 533-572 (2009). doi: 10.1016/j.jqsrt.2009.02.013

    CrossRef Google Scholar

    [61] Zhang X L, Jiang J W. Thermal conductivity of zeolitic imidazolate framework-8: A molecular simulation study. J Phys Chem C 117, 18441-18447 (2013). doi: 10.1021/jp405156y

    CrossRef Google Scholar

    [62] Calvin J J, Rosen P F, Smith S J, Woodfield B F. Heat capacities and thermodynamic functions of the ZIF organic linkers imidazole, 2-methylimidazole, and 2-ethylimidazole. J Chem Thermodyn 132, 129-141 (2019). doi: 10.1016/j.jct.2018.12.024

    CrossRef Google Scholar

    [63] Redding B, Alam M, Seifert M, Cao H. High-resolution and broadband all-fiber spectrometers. Optica 1, 175-180 (2014). doi: 10.1364/OPTICA.1.000175

    CrossRef Google Scholar

    [64] Bao J, Bawendi M G. A colloidal quantum dot spectrometer. Nature 523, 67-70 (2015). doi: 10.1038/nature14576

    CrossRef Google Scholar

    [65] Li E W, Chong X Y, Ren F H, Wang A X. Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array. Opt Lett 41, 1913-1916 (2016). doi: 10.1364/OL.41.001913

    CrossRef Google Scholar

    [66] Cerjan B, Halas N J. Toward a nanophotonic nose: a compressive sensing-enhanced, optoelectronic mid-infrared spectrometer. ACS Photonics 6, 79-86 (2019).

    Google Scholar

    [67] Wang Z, Yi S, Chen A, Zhou M, Luk T S et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat Commun 10, 1020 (2019). doi: 10.1038/s41467-019-08994-5

    CrossRef Google Scholar

    [68] Wang Z, Yu Z F. Spectral analysis based on compressive sensing in nanophotonic structures. Opt Express 22, 25608-25614 (2014). doi: 10.1364/OE.22.025608

    CrossRef Google Scholar

  • Supplementary information for On-chip readout plasmonic mid-IR gas sensor
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(10185) PDF downloads(2627) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint