The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque, which is susceptible to the mechanical and morphological properties of individual particle. Here we report on a robust and high-speed rotation control in optical tweezers by using a novel linear polarization synthesis based on optical heterodyne interference between two circularly polarized lights with opposite handedness. The synthesized linear polarization can be rotated in a hopping-free scheme at arbitrary speed determined electronically by the heterodyne frequency between two laser fields. The experimental demonstration of a trapped vaterite particle in water shows that the precisely controlled rotation frequency of 300 Hz can be achieved. The proposed method will find promising applications in optically driven micro-gears, fluidic pumps and rotational micro-rheology.
Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference
作者单位信息

出版日期:2020年8月21日
摘要
参考文献
1. Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J. An optically driven pump for microfluidics. Lab Chip 6, 735–739 (2006).
2. Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Express 12, 1144–1149 (2004).
3. Ahn J, Xu Z J, Bang J, Ju P, Gao X Y et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat Nanotechnol 15, 89–93 (2020).
4. Zhu J M, Zhu X Q, Zuo Y F, Hu X J, Shi Y et al. Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron Adv 2, 190007 (2019).
5. Beth R A. Mechanical detection and measurement of the angular momentum of light. Phys Rev 50, 115–125 (1936).
6. Lin C L, Wang I, Dollet B, Baldeck P L. Velocimetry microsensors driven by linearly polarized optical tweezers. Opt Lett 31, 329–331 (2006).
7. Li M M, Yan S H, Yao B L, Liang Y S, Han G X et al. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. J Opt Soc Am A 33, 1341–1347 (2016).
8. Liaw J W, Chen Y S, Kuo M K. Rotating Au nanorod and nanowire driven by circularly polarized light. Opt Express 22, 26005–26015 (2014).
9. Liaw J W, Chen Y S, Kuo M K. Maxwell stress induced optical torque upon gold prolate nanospheroid. Appl Phys A 122, 182 (2016).
10. Friese M E J, Enger J, Rubinsztein-Dunlop H, Heckenberg N R. Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A 54, 1593–1596 (1996).
11. Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).
12. Arita Y, Richards J M, Mazilu M, Spalding G C, Skelton Spesyvtseva S E et al. Rotational dynamics and heating of trapped nanovaterite particles. ACS Nano 10, 11505–11510 (2016).
13. Wei S B, Wang D P, Lin J, Yuan X C. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity. Opto-Electron Adv 1, 180006 (2018).
14. Parkin S, Kn?ner G, Singer W, Nieminen T A, Heckenberg N R et al. Optical torque on microscopic objects. Method Cell Biol 82, 525–561 (2007).
15. Yang Y, Brimicombe P D, Roberts N W, Dickinson M R, Osipov M et al. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Opt Express 16, 6877–6882 (2008).
16. Kuhn S, Kosloff A, Stickler B A, Patolsky F, Hornberger K et al. Full rotational control of levitated silicon nanorods. Optica 4, 356–360 (2017).
17. Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).
18. Tong L, Miljkovi? V D, K?ll M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett 10, 268–273 (2010).
19. Cao Y Y, Song W H, Ding W Q, Sun F K, Zhu T T. Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams. Opt Express 22, 18113–18118 (2014).
20. Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency. J Phys D: Appl Phys 32, 1455–1461 (1999).
21. La Porta A, Wang M D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92, 190801 (2004).
22. Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett 56, 665–667 (1990).
23. Cheng J C, Nafie L A, Allen S D, Braunstein A I. Photoelastic modulator for the 0.55–13-μm range. Appl Opt 15, 1960–1965 (1976).
24. Yamaguchi R, Nose T, Sato S. Liquid crystal polarizers with axially symmetrical properties. Jpn J Appl Phys 28, 1730–1731 (1989).
25. Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt Lett 21, 1948–1950 (1996).
26. Provenzano C, Pagliusi P, Cipparrone G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces. Appl Phys Lett 89, 121105 (2006).
27. Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt Express 18, 7173–7183 (2010).
28. Liu M J, Chen J, Zhang Y, Shi Y, Zhao C L et al. Generation of coherence vortex by modulating the correlation structure of random lights. Photon Res 7, 1485–1492 (2019).
29. Xiao F J, Shang W Y, Zhu W R, Han L et al., Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer. Photon Res 6, 157–161 (2018).
30. Chen R S, Wang J H, Zhang X Q, Yao J N, Ming H et al. Fiber-based mode converter for generating optical vortex beams. Opto-Electron Adv 1, 180003 (2018).
31. Donnay J D H, Donnay G. Optical determination of water content in spherulitic vaterite. Acta Cryst 22, 312–314 (1967).
32. Tracy S L, Williams D A, Jennings H M. The growth of calcite spherulites from solution: II. Kinetics of formation. J Cryst Growth 193, 382–388 (1998).
33. Parkin S J, Vogel R, Persson M, Funk M, Loke V L Y et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. Opt Express 17, 21944–21955 (2009).
34. Bishop A I, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical microrheology using rotating laser-trapped particles. Phys Rev Lett 92, 198104 (2004).
35. Vogel R, Persson M, Feng C, Parkin S J, Nieminen T A et al. Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25, 11672–11679 (2009).
36. Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R. Calculation and optical measurement of laser trapping forces on non-spherical particles. J Quant Spectrosc Radiat Transf 70, 627–637 (2001).
37. Bonin K D, Kourmanov B, Walker T G. Light torque nanocontrol, nanomotors and nanorockers. Opt Express 10, 984–989 (2002).
38. Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical measurement of microscopic torques. J Mod Opt 48, 405–413 (2001).
39. Fei P, Nie J, Lee J, Ding Y C, Li S R et al. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens. Adv Photon 1, 016002 (2019).
40. Li J J, Matlock A C, Li Y Z, Chen Q, Zuo C et al. High-speed in vitro intensity diffraction tomography. Adv Photon 1, 066004 (2019).
41. Feng S J, Chen Q, Gu G H, Tao T Y, Zhang L et al. Fringe pattern analysis using deep learning. Adv Photon 1, 025001 (2019).
42. Wang H Y, Zheng J, Fu Y F, Wang C L, Huang X R et al. Multichannel high extinction ratio polarized beam splitters based on metasurfaces. Chin Opt Lett 17, 052303 (2019).
43. Rocco D, Gili V F, Ghirardini L, Carletti L, Favero I et al. Tuning the second-harmonic generation in AlGaAs nanodimers via non-radiative state optimization [Invited]. Photon Res 6, B6–B12 (2018).
44. Nodal Stevens D J, ávila B J, Rodríguez-Lara B M. Necklaces of PT-symmetric dimers. Photon Res 6, A31–A37 (2018).
45. Sun S, Zhang C, Zhang H T, Gao Y S, Yi N B et al. Enhancing magnetic dipole emission with magnetic metamaterials. Chin Opt Lett 16, 050008 (2018).
46. Liu C, Chen L, Wu T S, Liu Y M, Li J et al. All-dielectric three-element transmissive Huygens’ metasurface performing anomalous refraction. Photon Res 7, 1501–1510 (2019).
基金项目:
National Natural Science Foundation of China (91750203 and 91850111)
导出参考文献,格式为:
引用本文:
Liu W, Dong D S, Yang H, Gong Q H, Shi K B. Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference. Opto-Electron Adv 3, 200022 (2020).