Optical waveguides are far more than mere connecting elements in integrated optical systems and circuits. Benefiting from their high optical confinement and miniaturized footprints, waveguide structures established based on crystalline materials, particularly, are opening exciting possibilities and opportunities in photonic chips by facilitating their on-chip integration with different functionalities and highly compact photonic circuits. Femtosecond-laser-direct writing (FsLDW), as a true three-dimensional (3D) micromachining and microfabrication technology, allows rapid prototyping of on-demand waveguide geometries inside transparent materials via localized material modification. The success of FsLDW lies not only in its unsurpassed aptitude for realizing 3D devices but also in its remarkable material-independence that enables cross-platform solutions. This review emphasizes FsLDW fabrication of waveguide structures with 3D layouts in dielectric crystals. Their functionalities as passive and active photonic devices are also demonstrated and discussed.
Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application
作者单位信息
出版日期:2020年10月23日
摘要
参考文献
1. Lifante G. Integrated Photonics: Fundamentals (John Wiley & Sons, Hoboken, 2003).
2. Saleh B E A, Teich M C. Fundamentals of Photonics 3rd ed (John Wiley & Sons, Hoboken, 2019).
3. Grivas C. Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques. Prog Quant Electron 35, 159–239 (2011).
4. Grivas C. Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications. Prog Quant Electron 45–46, 3–160 (2016).
5. Jia Y C, Chen F. Compact solid-state waveguide lasers operating in the pulsed regime: a review [Invited]. Chin Opt Lett 17, 012302 (2019).
6. Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005).
7. Mackenzie J I. Dielectric solid-state planar waveguide lasers: a review. IEEE J Sel Top Quantum Electron 13, 626–637 (2007).
8. Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photonics Rev 6, 622–640 (2012).
9. Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).
10. Wolf R, Jia Y C, Bonaus S, Werner C S, Herr S J et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5, 872–875 (2018).
11. Osellame R, Cerullo G, Ramponi R. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin Heidelberg, 2012).
12. Chen F, Vázquez de Aldana J R. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev 8, 251–275 (2014).
13. Sugioka K, Cheng Y. Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications (Springer, London, 2014).
14. Choudhury D, Macdonald J R, Kar A K. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev 8, 827–846 (2014).
15. Gross S, Withford M J. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332–352 (2015).
16. Davis K M, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Opt Lett 21, 1729–1731 (1996).
17. Gross S, Dubov M, Withford M J. On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics. Opt Express 23, 7767–7770 (2015).
18. Ams M, Dekker P, Gross S, Withford M J. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses. Nanophotonics 6, 743–763 (2017).
19. Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl Phys A 89, 127–132 (2007).
20. Thomas J, Heinrich M, Zeil P, Hilbert V, Rademaker K et al. Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform. Phys Status Solidi A 208, 276–283 (2011).
21. Macdonald J R, Thomson R R, Beecher S J, Psaila N D, Bookey H T et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe. Opt Lett 35, 4036–4038 (2010).
22. Rodenas A, Kar A K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt Express 19, 17820–17833 (2011).
23. He R Y, Hernández-Palmero I, Romero C, Vázquez de Aldana J R, Chen F. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing. Opt Express 22, 31293–31298 (2014).
24. Ródenas A, Torchia G A, Lifante G, Cantelar E, Lamela J et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations. Appl Phys B 95, 85–96 (2009).
25. Ródenas A, Maestro L M, Ramírez M O, Torchia G A, Roso L et al. Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. J Appl Phys 106, 013110 (2009).
26. Nguyen H D, Ródenas A, Vázquez de Aldana J R, Martínez J, Chen F et al. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides. Opt Express 24, 7777–7791 (2016).
27. Okhrimchuk A G, Shestakov A V, Khrushchev I, Mitchell J. Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing. Opt Lett 30, 2248–2250 (2005).
28. Liu H L, Jia Y C, Vázquez de Aldana J R, Jaque D, Chen F. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance. Opt Express 20, 18620–18629 (2012).
29. Jia Y C, Chen F, Vázquez de Aldana J R. Efficient continuous-wave laser operation at 1064 nm in Nd: YVO4 cladding waveguides produced by femtosecond laser inscription. Opt Express 20, 16801–16806 (2012).
30. Jia Y C, He R Y, Vázquez de Aldana J R, Liu H L, Chen F. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Opt Express 27, 30941–30951 (2019).
31. Chen F, Vázquez de Aldana J R. Laser-written 3D crystalline photonic devices. SPIE Newsroom (2015).
32. Gui L, Xu B X, Chong T C. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photonics Technol Lett 16, 1337–1339 (2004).
33. Lv J M, Cheng Y C, Yuan W H, Hao X T, Chen F. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Opt Mater Express 5, 1274–1280 (2015).
34. Li L Q, Nie W J, Li Z Q, Romero C, Rodriguez-Beltrán R I et al. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band. Opt Express 25, 24236–24241 (2017).
35. Osellame R, Lobino M, Chiodo N, Marangoni M, Cerullo G et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl Phys Lett 90, 241107 (2007).
36. Zhang B, Xiong B C, Li Z Q, Li L Q, Lv J M et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses. Opt Mater 86, 571–575 (2018).
37. Burghoff J, Grebing C, Nolte S, Tünnermann A. Waveguides in lithium niobate fabricated by focused ultrashort laser pulses. Appl Surf Sci 253, 7899–7902 (2007).
38. Calmano T, Paschke A G, Müller S, Kränkel C, Huber G. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt Express 21, 25501–25508 (2013).
39. Calmano T, Kränkel C, Huber G. Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio. Opt Lett 40, 1753–1756 (2015).
40. Courvoisier A, Booth M J, Salter P S. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl Phys Lett 109, 031109 (2016).
41. Presti D A, Guarepi V, Videla F, Torchia G A. Design and implementation of an integrated optical coupler by femtosecond laser written-waveguides in LiNbO3. Opt Laser Eng 126, 105860 (2020).
42. Heinrich M, Szameit A, Dreisow F, Döring S, Thomas J et al. Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate. Appl Phys Lett 93, 101111 (2008).
43. Liu H L, Yao Y C, Wu P F, Jia Y C. Femtosecond laser direct writing of evanescently-coupled planar waveguide laser arrays. Opt Mater Express 9, 4447–4455 (2019).
44. Ajates J G, Romero C, Castillo G R, Chen F, Vázquez de Aldana J R. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals. Opt Mater 72, 220–225 (2017).
45. Castillo G R, Labrador-Páez L, Chen F, Camacho-López S, Vázquez de Aldana J R. Depressed-cladding 3-D waveguide arrays fabricated with femtosecond laser pulses. J Lightwave Technol 35, 2520–2525 (2017).
46. Ajates J G, Vázquez de Aldana J R, Chen F, Ródenas A. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Opt Mater Express 8, 1890–1901 (2018).
47. Li S L, Ye Y K, Shen C Y, Wang H L. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters. Opt Eng 57, 117103 (2018).
48. Ren Y Y, Zhang L M, Xing H G, Romero C, Vázquez de Aldana J R et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal. Opt Laser Technol 103, 82–88 (2018).
49. Jia Y C, Cheng C, Vázquez de Aldana J R, Castillo G R, del Rosal Rabes B et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci Rep 4, 5988 (2014).
50. Jia Y C, Cheng C, Vázquez de Aldana J R, Chen F. Three-dimensional waveguide splitters inscribed in Nd:YAG by femtosecond laser writing: realization and laser emission. J Lightwave Technol 34, 1328–1332 (2016).
51. Lv J M, Cheng Y Z, Vázquez de Aldana J R, Hao X T, Chen F. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. J Lightwave Technol 34, 3587–3591 (2016).
52. Nie W J, He R Y, Cheng C, Rocha U, Vázquez de Aldana J R et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing. Opt Lett 41, 2169–2172 (2016).
53. Kifle E, Mateos X, Vázquez de Aldana J R, Ródenas A, Loiko P et al. Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers. Opt Lett 42, 1169–1172 (2017).
54. Ren Y Y, Zhang L M, Lv J M, Zhao Y F, Romero C et al. Optical-lattice-like waveguide structures in Ti:Sapphire by femtosecond laser inscription for beam splitting. Opt Mater Express 7, 1942–1949 (2017).
55. Nie W J, Romero C, Lu Q M, Vázquez de Aldana J R, Chen F. Implementation of nearly single-mode second harmonic generation by using a femtosecond laser written waveguiding structure in KTiOPO4 nonlinear crystal. Opt Mater 84, 531–535 (2018).
56. Morales-Vidal M, Sola Í J, Castillo G R, Vázquez de Aldana J R, Alonso B. Ultrashort pulse propagation through depressed-cladding channel waveguides in YAG crystal: Spatio-temporal characterization. Opt Laser Technol 123, 105898 (2020).
57. Zhang Q, Li M, Xu J, Lin Z J, Yu H F et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Res 7, 503–507 (2019).
58. Liao Y, Xu J, Cheng Y, Zhou Z H, He F et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33, 2281–2283 (2008).
59. Chen C, Akhmadaliev S, Romero C, Vázquez de Aldana J R, Zhou S Q et al. Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 Mev oxygen ion implantation and femtosecond laser ablation. J Lightwave Technol 35, 225–229 (2017).
60. Li L Q, Nie W J, Li Z Q, Lu Q M, Romero C et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci Rep 7, 7034 (2017).
61. Ródenas A, Gu M, Corrielli G, Paiè P, John S et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat Photonics 13, 105–109 (2019).
62. Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
63. Burghoff J, Hartung H, Nolte S, Tünnermann A. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl Phys A 86, 165–170 (2007).
64. Ringleb S, Rademaker K, Nolte S, Tünnermann A. Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses. Appl Phys B 102, 59–63 (2011).
65. Presti D A, Guarepi V, Videla F, Fasciszewski A, Torchia G A. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing. Opt Laser Eng 111, 222–226 (2018).
66. Liu H L, Cheng C, Romero C, Vázquez de Aldana J R, Chen F. Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides. Opt Express 23, 9730–9735 (2015).
67. Liu H L, Vázquez de Aldana J R, Hong M H, Chen F. Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing. IEEE J Sel Top Quantum Electron 22, 227–230 (2016).
68. Caird J A, Payne S A, Staber P R, Ramponi A J, Chase L L et al. Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser. IEEE J Quantum Electron 24, 1077–1099 (1988).
69. Nie W J, Jia Y C, Vázquez de Aldana J R, Chen F. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription. Sci Rep 6, 22310 (2016).
70. Wu R B, Zhang J H, Yao N, Fang W, Qiao L L et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett 43, 4116–4119 (2018).
71. Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett 122, 173903 (2019).
72. Boes A, Corcoran B, Chang L, Bowers J, Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev 12, 1700256 (2018).
73. Seri A, Corrielli G, Lago-Rivera D, Lenhard A, de Riedmatten H et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica 5, 934–941 (2018).
74. Ren Y Y, Brown G, Ródenas A, Beecher S, Chen F et al. Mid-infrared waveguide lasers in rare-earth-doped YAG. Opt Lett 37, 3339–3341 (2012).
75. Douglass G, Arriola A, Heras I, Martin G, Le Coarer E et al. Novel concept for visible and near infrared spectro-interferometry: laser-written layered arrayed waveguide gratings. Opt Express 26, 18470–18479 (2018).
76. Norris B, Bland-Hawthorn J. Astrophotonics: The rise of integrated photonics in astronomy. Opt Photonics News 30, 26–33 (2019).
基金项目:
National Natural Science Foundation of China (No. 61775120),“Taishan Scholars Youth Expert Program” of Shandong Province,“Qilu Young Scholar Program” of Shandong University, China.
导出参考文献,格式为:
引用本文:
Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrica-tion and application. Opto-Electron Adv 3, 190042 (2020).