Wang B Z, Ba D X, Chu Q, Qiu L Q, Zhou D W et al. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering. Opto-Electron Adv 3, 200013 (2020). doi: 10.29026/oea.2020.200013
Citation: Wang B Z, Ba D X, Chu Q, Qiu L Q, Zhou D W et al. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering. Opto-Electron Adv 3, 200013 (2020). doi: 10.29026/oea.2020.200013

Original Article Open Access

High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering

More Information
  • These authors contributed equally to this work.

  • Corresponding author: Y K Dong, E-mail: aldendong@163.com
  • The phase-sensitive optical time-domain reflectometry (φ-OTDR) is a good candidate for distributed dynamic strain sensing, due to its high sensitivity and fast measurement, which has already been widely used in intrusion monitoring, geophysical exploration, etc. For the frequency scanning based φ-OTDR, the phase change manifests itself as a shift of the intensity distribution. The correlation between the reference and measured spectra is employed for relative strain demodulation, which has imposed the continuous measurement for the absolute strain demodulation. Fortunately, the Brillouin optical time domain analysis (BOTDA) allows for the absolute strain demodulation with only one measurement. In this work, the combination of the φ-OTDR and BOTDA has been proposed and demonstrated by using the same set of frequency-scanning optical pulses, and the frequency-agile technique is also introduced for fast measurements. A 9.9 Hz vibration with a strain range of 500 nε has been measured under two different absolute strains (296.7με and 554.8 με) by integrating the Rayleigh and Brillouin information. The sub-micro strain vibration is demonstrated by the φ-OTDR signal with a high sensitivity of 6.8 nε, while the absolute strain is measured by the BOTDA signal with an accuracy of 5.4 με. The proposed sensor allows for dynamic absolute strain measurements with a high sensitivity, thus opening a door for new possibilities which are yet to be explored.
  • 加载中
  • [1] Boyd R W. Nonlinear Optics 3rd ed (Academic Press, Amsterdam, 2008).

    Google Scholar

    [2] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics. Appl Opt 15, 2112-2115 (1976). doi: 10.1364/AO.15.002112

    CrossRef Google Scholar

    [3] Dakin J P, Pratt D J, Bibby G W, Ross J N. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron Lett 21, 569-570 (1985). doi: 10.1049/el:19850402

    CrossRef Google Scholar

    [4] Culverhouse D, Farahi F, Pannell C N, Jackson D A. Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors. Electron Lett 25, 913-915 (1989). doi: 10.1049/el:19890612

    CrossRef Google Scholar

    [5] Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photonics Technol Lett 1, 107-108 (1989). doi: 10.1109/68.34756

    CrossRef Google Scholar

    [6] Wang B Z, Fan B H, Zhou D W, Pang C, Li Y et al. High-performance optical chirp chain BOTDA by using a pattern recognition algorithm and the differential pulse-width pair technique. Photonics Res 7, 652-658 (2019). doi: 10.1364/PRJ.7.000652

    CrossRef Google Scholar

    [7] Peng F, Wu H, Jia X H, Rao Y J, Wang Z N et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Opt Express 22, 13804-13810 (2014). doi: 10.1364/OE.22.013804

    CrossRef Google Scholar

    [8] Wang B Z, Pang C, Zhou D W, Dong Y K. Advances of key technologies in long-range distributed Brillouin optical fiber sensing. Opto-Electron Eng 45, 170484 (2018).

    Google Scholar

    [9] Wang B Z, Dong Y K, Ba D X, Bao X Y. High spatial resolution: an integrative review of its developments on the Brillouin optical time- and correlation-domain analysis. Meas Sci Technol 31, 052001 (2020). doi: 10.1088/1361-6501/ab5f85

    CrossRef Google Scholar

    [10] Lu B, Pan Z Q, Wang Z Y, Zheng H R, Ye Q et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse. Opt Lett 42, 391-394 (2017). doi: 10.1364/OL.42.000391

    CrossRef Google Scholar

    [11] Lin W Q, Yang Z S, Hong X B, Wang S, Wu J. Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers. Opt Express 25, 7604-7615 (2017). doi: 10.1364/OE.25.007604

    CrossRef Google Scholar

    [12] Zhang L, Costa L, Yang Z S, Soto M A, Gonzalez-Herraez M et al. Analysis and reduction of large errors in rayleigh-based distributed sensor. J Lightw Technol 37, 4710-4719 (2019). doi: 10.1109/JLT.2019.2917746

    CrossRef Google Scholar

    [13] Ba D X, Wang B Z, Zhou D W, Yin M J, Dong Y K et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA. Opt Express 24, 9781-9793 (2016). doi: 10.1364/OE.24.009781

    CrossRef Google Scholar

    [14] Dong Y K, Chen X, Liu E H, Fu C, Zhang H Y et al. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer. Appl Opt 55, 7810-7815 (2016). doi: 10.1364/AO.55.007810

    CrossRef Google Scholar

    [15] Shao L Y, Liu S Q, Bandyopadhyay S, Yu F H, Xu W J et al. Data-driven distributed optical vibration sensors: a review. IEEE Sens J 20, 6224-6239 (2020). doi: 10.1109/JSEN.2019.2939486

    CrossRef Google Scholar

    [16] He H J, Shao L Y, Luo B, Li Z L, Zou X H et al. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing. Opt Express 24, 4842-4855 (2016). doi: 10.1364/OE.24.004842

    CrossRef Google Scholar

    [17] Peng F, Duan N, Rao Y J, Li J. Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technol Lett 26, 2055-2057 (2014). doi: 10.1109/LPT.2014.2346760

    CrossRef Google Scholar

    [18] Zhang J D, Zhu T, Zhou H, Huang S H, Liu M et al. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses. Opt Express 24, 27482-27493 (2016). doi: 10.1364/OE.24.027482

    CrossRef Google Scholar

    [19] Zhao Z Y, Tang M, Lu C. Distributed multicore fiber sensors. Opto-Electron Adv 3, 190024 (2020). doi: 10.29026/oea.2020.190024

    CrossRef Google Scholar

    [20] Juarez J C, Maier E W, Nam Choi K, Taylor H F. Distributed fiber-optic intrusion sensor system. J Lightw Technol 23, 2081-2087 (2005). doi: 10.1109/JLT.2005.849924

    CrossRef Google Scholar

    [21] Koyamada Y, Imahama M, Kubota K, Hogari K. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J Lightw Technol 27, 1142-1146 (2009). doi: 10.1109/JLT.2008.928957

    CrossRef Google Scholar

    [22] Wang C, Wang C, Shang Y, Liu X H, Peng G D. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry. Opt Commun 346, 172-177 (2015). doi: 10.1016/j.optcom.2015.02.044

    CrossRef Google Scholar

    [23] Wang Z N, Zhang L, Wang S, Xue N T, Peng F et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt Express 24, 853-858 (2016). doi: 10.1364/OE.24.000853

    CrossRef Google Scholar

    [24] He H J, Shao L Y, Li Z L, Zhang Z Y, Zou X H et al. Self-mixing demodulation for coherent phase-sensitive OTDR system. Sensors 16, 681 (2016). doi: 10.3390/s16050681

    CrossRef Google Scholar

    [25] Liehr S, Muanenda Y S, Münzenberger S, Krebber K. Relative change measurement of physical quantities using dual-wavelength coherent OTDR. Opt Express 25, 720-729 (2017). doi: 10.1364/OE.25.000720

    CrossRef Google Scholar

    [26] Pastor-Graells J, Martins H F, Garcia-Ruiz A, Martin-Lopez S, Gonzalez-Herraez M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt Express 24, 13121-13133 (2016). doi: 10.1364/OE.24.013121

    CrossRef Google Scholar

    [27] Bhatta H D, Costa L, Garcia-Ruiz A, Fernandez-Ruiz M R, Martins H F et al. Dynamic measurements of 1000 microstrains using chirped-pulse phase-sensitive optical time-domain reflectometry. J Lightw Technol 37, 4888-4895 (2019). doi: 10.1109/JLT.2019.2928621

    CrossRef Google Scholar

    [28] Soto M A, Lu X, Martins H F, Gonzalez-Herraez M, Thévenaz L. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers. Opt Express 23, 24923-24936 (2015). doi: 10.1364/OE.23.024923

    CrossRef Google Scholar

    [29] Mikhailov S, Zhang L, Geernaert T, Berghmans F, Thevenaz L. Distributed hydrostatic pressure measurement using Phase-OTDR in a highly birefringent photonic crystal fiber. J Lightw Technol 37, 4496-4500 (2019). doi: 10.1109/JLT.2019.2904756

    CrossRef Google Scholar

    [30] Liehr S, Münzenberger S, Krebber K. Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing. Opt Express 26, 10573-10588 (2018). doi: 10.1364/OE.26.010573

    CrossRef Google Scholar

    [31] Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing. Opt Express 20, 8584-8591 (2012). doi: 10.1364/OE.20.008584

    CrossRef Google Scholar

    [32] Chaube P, Colpitts B G, Jagannathan D, Brown A W. Distributed fiber-optic sensor for dynamic strain measurement. IEEE Sens J 8, 1067-1072 (2008). doi: 10.1109/JSEN.2008.926107

    CrossRef Google Scholar

    [33] Voskoboinik A, Yilmaz O F, Willner A W, Tur M. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Opt Express 19, B842-B847 (2011). doi: 10.1364/OE.19.00B842

    CrossRef Google Scholar

    [34] Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt Lett 34, 2613-2615 (2009). doi: 10.1364/OL.34.002613

    CrossRef Google Scholar

    [35] Zhao C, Tang M, Wang L, Wu H, Zhao Z Y et al. BOTDA using channel estimation with direct-detection optical OFDM technique. Opt Express 25, 12698-12709 (2017). doi: 10.1364/OE.25.012698

    CrossRef Google Scholar

    [36] Fang J, Xu P B, Dong Y K, Shieh W. Single-shot distributed Brillouin optical time domain analyzer. Opt Express 25, 15188-15198 (2017). doi: 10.1364/OE.25.015188

    CrossRef Google Scholar

    [37] Zhou D W, Dong Y K, Wang B Z, Pang C, Ba D X et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement. Light Sci Appl 7, 32 (2018). doi: 10.1038/s41377-018-0030-0

    CrossRef Google Scholar

    [38] Dang Y L, Zhao Z Y, Tang M, Zhao C, Gan L et al. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber. Opt Express 25, 20183-20193 (2017). doi: 10.1364/OE.25.020183

    CrossRef Google Scholar

    [39] Wang B Z, Hua Z J, Pang C, Zhou D W, Ba D X et al. Fast Brillouin optical time-domain reflectometry based on the frequency-agile technique. J Lightw Technol 38, 946-952 (2020). doi: 10.1109/JLT.2019.2950451

    CrossRef Google Scholar

    [40] Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y. Development of a distributed sensing technique using Brillouin scattering. J Lightw Technol 13, 1296-1302 (1995). doi: 10.1109/50.400684

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(15844) PDF downloads(1957) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint