Tong M Y, Hu Y Z, Xie X N, Zhu X G, Wang Z Y et al. Helicity-dependent THz emission induced by ultrafast spin photocurrent in nod-al-line semimetal candidate Mg3Bi2. Opto-Electron Adv 3, 200023 (2020). doi: 10.29026/oea.2020.200023
Citation: Tong M Y, Hu Y Z, Xie X N, Zhu X G, Wang Z Y et al. Helicity-dependent THz emission induced by ultrafast spin photocurrent in nod-al-line semimetal candidate Mg3Bi2. Opto-Electron Adv 3, 200023 (2020). doi: 10.29026/oea.2020.200023

Original Article Open Access

Helicity-dependent THz emission induced by ultrafast spin photocurrent in nodal-line semimetal candidate Mg3Bi2

More Information
  • Helicity-dependent ultrafast spin current generated by circularly polarized photons in topological materials holds the crux to many technological improvements, such as quantum communications, on-chip communication processing and storage. Here, we present the manipulation of helicity-dependent terahertz emission generated in a nodal line semimetal candidate Mg3Bi2 by using photon polarization states. The terahertz emission is mainly ascribed to the helicity-dependent photocurrent that is originated from circular photogalvanic effects, and the helicity-independent photocurrent that is attributed to linear photogalvanic effect. Our work will inspire more explorations into novel nodal line semimetals and open up new opportunities for developing ultrafast optoelectronics in the topological system.
  • 加载中
  • [1] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P et al. Chiral quantum optics. Nature 541, 473-480 (2017). doi: 10.1038/nature21037

    CrossRef Google Scholar

    [2] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S et al. Coherent terahertz control of antiferromagnetic spin waves. Nat Photonics 5, 31-34 (2011). doi: 10.1038/nphoton.2010.259

    CrossRef Google Scholar

    [3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488-1495 (2001). doi: 10.1126/science.1065389

    CrossRef Google Scholar

    [4] Ferguson B, Zhang X C. Materials for terahertz science and technology. Nat Mater 1, 26-33 (2002). doi: 10.1038/nmat708

    CrossRef Google Scholar

    [5] McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N. Control over topological insulator photocurrents with light polarization. Nat Nanotechnol 7, 96-100 (2012). doi: 10.1038/nnano.2011.214

    CrossRef Google Scholar

    [6] Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T et al. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3. Nat Commun 7, 13259 (2016). doi: 10.1038/ncomms13259

    CrossRef Google Scholar

    [7] Gao Y, Kaushik S, Philip E J, Li Z, Qin Y et al. Chiral terahertz wave emission from the Weyl semimetal TaAs. Nat Commun 11, 720 (2020). doi: 10.1038/s41467-020-14463-1

    CrossRef Google Scholar

    [8] Zhang Z L, Chen Y P, Cui S, He F, Chen M et al. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat Photonics 12, 554-559 (2018). doi: 10.1038/s41566-018-0238-9

    CrossRef Google Scholar

    [9] Burkov A A, Hook M D, Balents L. Topological nodal semimetals. Phys Rev B 84, 235126 (2011). doi: 10.1103/PhysRevB.84.235126

    CrossRef Google Scholar

    [10] Fang C, Chen Y G, Kee H Y, Fu L. Topological nodal line semimetals with and without spin-orbital coupling. Phys Rev B 92, 081201 (2015). doi: 10.1103/PhysRevB.92.081201

    CrossRef Google Scholar

    [11] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat Commun 7, 10556 (2016). doi: 10.1038/ncomms10556

    CrossRef Google Scholar

    [12] Bian G, Chang T R, Zheng H, Velury S, Xu S Y et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys Rev B 93, 121113 (2016). doi: 10.1103/PhysRevB.93.121113

    CrossRef Google Scholar

    [13] Yang S Y, Yang H, Derunova E, Parkin S S P, Yan B H et al. Symmetry demanded topological nodal-line materials. Adv Phys: X 3, 1414631 (2018).

    Google Scholar

    [14] Yu R, Weng H M, Fang Z, Dai X, Hu X. Topological node-line semimetal and dirac semimetal state in antiperovskite Cu3PdN. Phys Rev Lett 115, 036807 (2015). doi: 10.1103/PhysRevLett.115.036807

    CrossRef Google Scholar

    [15] Wu Y, Wang L L, Mun E, Johnson D D, Mou D X et al. Dirac node arcs in PtSn4. Nat Phys 12, 667-671 (2016). doi: 10.1038/nphys3712

    CrossRef Google Scholar

    [16] Chang T R, Pletikosic I, Kong T, Bian G, Huang A et al. Realization of a type-Ⅱ nodal-line semimetal in Mg3Bi2. Adv Sci 6, 1800897 (2019). doi: 10.1002/advs.201800897

    CrossRef Google Scholar

    [17] Mao J, Zhu H T, Ding Z W, Liu Z H, Gamage G A et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495-498 (2019). doi: 10.1126/science.aax7792

    CrossRef Google Scholar

    [18] Zhou T, Zhu X G, Tong M Y, Zhang Y, Luo X B et al. Experimental evidence of topological surface states in Mg3Bi2 films grown by molecular beam epitaxy. Chin Phys Lett 36, 117303 (2019). doi: 10.1088/0256-307X/36/11/117303

    CrossRef Google Scholar

    [19] Tu C M, Chen Y C, Huang P, Chuang P Y, Lin M Y et al. Helicity-dependent terahertz emission spectroscopy of topological insulator Sb2Te3 thin films. Phys Rev B 96, 195407 (2017). doi: 10.1103/PhysRevB.96.195407

    CrossRef Google Scholar

    [20] Zhang X M, Jin L, Dai X F, Liu G D. Topological Type-Ⅱ nodal line semimetal and dirac semimetal state in stable kagome compound Mg3Bi2. J Phys Chem Lett 8, 4814-4819 (2017). doi: 10.1021/acs.jpclett.7b02129

    CrossRef Google Scholar

    [21] Sánchez-Barriga J, Golias E, Varykhalov A, Braun J, Yashina L V et al. Ultrafast spin-polarization control of Dirac fermions in topological insulators. Phys Rev B 93, 155426 (2016). doi: 10.1103/PhysRevB.93.155426

    CrossRef Google Scholar

    [22] Maysonnave J, Huppert S, Wang F, Maero S, Berger C et al. Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses. Nano Lett 14, 5797-5802 (2014). doi: 10.1021/nl502684j

    CrossRef Google Scholar

    [23] Plank H, Golub L E, Bauer S, Bel'kov V V, Herrmann T et al. Photon drag effect in (Bi1-xSbx)2Te3 three-dimensional topological insulators. Phys Rev B 93, 125434 (2016). doi: 10.1103/PhysRevB.93.125434

    CrossRef Google Scholar

    [24] Zhu L G, Kubera B, Fai Mak K, Shan J. Effect of surface states on terahertz emission from the Bi2Se3 surface. Sci Rep 5, 10308 (2015). doi: 10.1038/srep10308

    CrossRef Google Scholar

    [25] Zhang K X, Zhang Y Z, Wang X C, Yan T M, Jiang Y H. Continuum electron giving birth to terahertz emission. Photonics Res 8, 760-767 (2020). doi: 10.1364/PRJ.377408

    CrossRef Google Scholar

    [26] Bas D A, Muniz R A, Babakiray S, Lederman D, Sipe J E et al. Photocurrents in Bi2Se3: bulk versus surface, and injection versus shift currents. Opt Express 24, 23583 (2016). doi: 10.1364/OE.24.023583

    CrossRef Google Scholar

    [27] Park B C, Kim T H, Sim K I, Kang B Y, Kim J W et al. Terahertz single conductance quantum and topological phase transitions in topological insulator Bi2Se3 ultrathin films. Nat Commun 6, 6552 (2015). doi: 10.1038/ncomms7552

    CrossRef Google Scholar

    [28] He L, Xiu F X, Yu X X, Teague M, Jiang W J et al. Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett 12, 1486-1490 (2012). doi: 10.1021/nl204234j

    CrossRef Google Scholar

    [29] Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C et al. Helicity dependent photocurrent in electrically gated (Bi1-xSbx)2Te3 thin films. Nat Commun 8, 1037 (2017). doi: 10.1038/s41467-017-00711-4

    CrossRef Google Scholar

    [30] Hamh S Y, Park S H, Jerng S K, Jeon J H, Chun S H et al. Helicity-dependent photocurrent in a Bi2Se3 thin film probed by terahertz emission spectroscopy. Phys Rev B 94, 161405 (2016). doi: 10.1103/PhysRevB.94.161405

    CrossRef Google Scholar

    [31] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat Nanotechnol 8, 256-260 (2013). doi: 10.1038/nnano.2013.43

    CrossRef Google Scholar

    [32] Kinoshita Y, Kida N, Miyamoto T, Kanou M, Sasagawa T et al. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor. Phys Rev B 97, 161104 (2018). doi: 10.1103/PhysRevB.97.161104

    CrossRef Google Scholar

    [33] Wu Y, Elyasi M, Qiu X P, Chen M J, Liu Y et al. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv Mater 29, 1603031 (2017). doi: 10.1002/adma.201603031

    CrossRef Google Scholar

    [34] Bahk Y M, Ramakrishnan G, Choi J, Song H, Choi G et al. Plasmon enhanced terahertz emission from single layer graphene. ACS Nano 8, 9089-9096 (2014). doi: 10.1109/IRMMW-THz.2012.6380480

    CrossRef Google Scholar

    [35] Sirica N, Tobey R I, Zhao L X, Chen G F, Xu B et al. Tracking ultrafast photocurrents in the Weyl semimetal TaAs using THz emission spectroscopy. Phys Rev Lett 122, 197401 (2019). doi: 10.1103/PhysRevLett.122.197401

    CrossRef Google Scholar

    [36] Chen M J, Wu Y, Liu Y, Lee K, Qiu X P et al. Current-enhanced broadband THz emission from spintronic devices. Adv Opt Mater 7, 1801608 (2019). doi: 10.1002/adom.201801608

    CrossRef Google Scholar

    [37] Moore J E, Orenstein J. Confinement-induced berry phase and helicity-dependent photocurrents. Phys Rev Lett 105, 026805 (2010). doi: 10.1103/PhysRevLett.105.026805

    CrossRef Google Scholar

    [38] Dong J P, Gradwohl K P, Xu Y D, Wang T, Zhang B B et al. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy. Photonics Res 7, 518-525 (2019). doi: 10.1364/PRJ.7.000518

    CrossRef Google Scholar

    [39] Miltos Maragkakis G, Psilodimitrakopoulos S, Mouchliadis L, Paradisanos I, Lemonis A et al. Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation. Opto-Electron Adv 2, 190026 (2019). doi: 10.29026/oea.2019.190026

    CrossRef Google Scholar

    [40] Hu Y Z, Jiang T, Zhou J H, Hao H, Sun H et al. Ultrafast terahertz frequency and phase tuning by all-optical molecularization of metasurfaces. Adv Optical Mater 7, 1901050 (2019). doi: 10.1002/adom.201901050

    CrossRef Google Scholar

  • Supplementary information for Helicity-dependent THz emission induced by ultrafast spin photocurrent in nodal-line semimetal candidate Mg3Bi2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(6518) PDF downloads(1950) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint