Wang S H, Li Y H, Little B E, Wang L R, Wang X et al. Athermal third harmonic generation in micro-ring resonators. Opto-Electron Adv 3, 200028 (2020). doi: 10.29026/oea.2020.200028
Citation: Wang S H, Li Y H, Little B E, Wang L R, Wang X et al. Athermal third harmonic generation in micro-ring resonators. Opto-Electron Adv 3, 200028 (2020). doi: 10.29026/oea.2020.200028

Original Article Open Access

Athermal third harmonic generation in micro-ring resonators

More Information
  • Nonlinear high-harmonic generation in micro-resonators is a common technique used to extend the operating range of applications such as self-referencing systems and coherent communications in the visible region. However, the generated high-harmonic emissions are subject to a resonance shift with a change in temperature. We present a comprehensive study of the thermal behavior induced phase mismatch that shows this resonance shift can be compensated by a combination of the linear and nonlinear thermo-optics effects. Using this model, we predict and experimentally demonstrate visible third harmonic modes having temperature dependent wavelength shifts between -2.84 pm/℃ and 2.35 pm/℃ when pumped at the L-band. Besides providing a new way to achieve athermal operation, this also allows one to measure the thermal coefficients and Q-factor of the visible modes. Through steady state analysis, we have also identified the existence of stable athermal third harmonic generation and experimentally demonstrated orthogonally pumped visible third harmonic modes with a temperature dependent wavelength shift of 0.05 pm/℃ over a temperature range of 12 ℃. Our findings promise a configurable and active temperature dependent wavelength shift compensation scheme for highly efficient and precise visible emission generation for potential 2f-3f self-referencing in metrology, biological and chemical sensing applications.
  • 加载中
  • [1] Carmon T, Vahala K J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat Phys 3, 430-435 (2007). doi: 10.1038/nphys601

    CrossRef Google Scholar

    [2] Corcoran B, Monat C, Grillet C, Moss D J, Eggleton B J et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics 3, 206-210 (2009). doi: 10.1038/nphoton.2009.28

    CrossRef Google Scholar

    [3] Sasagawa K, Tsuchiya M. Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator. Appl Phys Express 2, 122401 (2009). doi: 10.1143/APEX.2.122401

    CrossRef Google Scholar

    [4] Farnesi D, Barucci A, Righini G C, Berneschi S, Soria S et al. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators. Phys Rev Lett 112, 093901 (2014). doi: 10.1103/PhysRevLett.112.093901

    CrossRef Google Scholar

    [5] Asano M, Komori S, Ikuta R, Imoto N, Özdemir Ş K et al. Visible light emission from a silica microbottle resonator by second- and third-harmonic generation. Opt Lett 41, 5793-5796 (2016). doi: 10.1364/OL.41.005793

    CrossRef Google Scholar

    [6] Liu H L, Zhang Z B, Shang Z C, Gao T, Wu X J. Dynamically manipulating third-harmonic generation of phase change material with gap-Plasmon resonators. Opt Lett 44, 5053-5056 (2019). doi: 10.1364/OL.44.005053

    CrossRef Google Scholar

    [7] Levy J S, Foster M A, Gaeta A L, Lipson M. Harmonic generation in silicon nitride ring resonators. Opt Express 19, 11415-11421 (2011). doi: 10.1364/OE.19.011415

    CrossRef Google Scholar

    [8] Wang L R, Chang L, Volet N, Pfeiffer M H P, Zervas M et al. Frequency comb generation in the green using silicon nitride microresonators. Laser Photonics Rev 10, 631-638 (2016). doi: 10.1002/lpor.201600006

    CrossRef Google Scholar

    [9] Lu X Y, Moille G, Li Q, Westly D A, Singh A et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat Photonics 13, 593-601 (2019). doi: 10.1038/s41566-019-0464-9

    CrossRef Google Scholar

    [10] Surya J B, Guo X, Zou C L, Tang H X. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica 5, 103-108 (2018). doi: 10.1364/OPTICA.5.000103

    CrossRef Google Scholar

    [11] Guo X, Zou C L, Jiang L, Tang H X. All-optical control of linear and nonlinear energy transfer via the Zeno effect. Phys Rev Lett 120, 203902 (2018). doi: 10.1103/PhysRevLett.120.203902

    CrossRef Google Scholar

    [12] Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett 122, 173903 (2019). doi: 10.1103/PhysRevLett.122.173903

    CrossRef Google Scholar

    [13] Li Y H, Wang S H, Tian Y Y, Ho W L, Li Y Y et al. Third-harmonic generation in CMOS-compatible highly doped silica micro-ring resonator. Opt Express 28, 641-651 (2020). doi: 10.1364/OE.28.000641

    CrossRef Google Scholar

    [14] Rodriguez A, Soljačić M, Joannopoulos J D, JohnsonS G. χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. Opt Express 15, 7303-7318 (2007). doi: 10.1364/OE.15.007303

    CrossRef Google Scholar

    [15] Zhang X Y, Cao Q T, Wang Z, Liu Y X, Qiu C W et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat Photonics 13, 21-24 (2019). doi: 10.1038/s41566-018-0297-y

    CrossRef Google Scholar

    [16] Liu B D, Yu H K, Li Z Y, Tong L M. Phase-matched second-harmonic generation in coupled nonlinear optical waveguides. J Opt Soc Am B 36, 2650-2658 (2019). doi: 10.1364/JOSAB.36.002650

    CrossRef Google Scholar

    [17] Guo H, Karpov M, Lucas E, Kordts A, Pfeiffer M H P et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys 13, 94-102 (2017). doi: 10.1038/nphys3893

    CrossRef Google Scholar

    [18] Bao C Y, Xuan Y, Jaramillo-Villegas J A, Leaird D E, Qi M H et al. Direct soliton generation in microresonators. Opt Lett 42, 2519-2522 (2017). doi: 10.1364/OL.42.002519

    CrossRef Google Scholar

    [19] Xue X X, Xuan Y, Wang C, Wang P H, Liu Y et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt Express 24, 687-698 (2016). doi: 10.1364/OE.24.000687

    CrossRef Google Scholar

    [20] Joshi C, Jang J K, Luke K, Ji X C, Miller S A et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt Lett 41, 2565-2568 (2016). doi: 10.1364/OL.41.002565

    CrossRef Google Scholar

    [21] Lee B S, Zhang M, Barbosa F A S, Miller S A, Mohanty A et al. On-chip thermo-optic tuning of suspended microresonators. Opt Express 25, 12109-12120 (2017). doi: 10.1364/OE.25.012109

    CrossRef Google Scholar

    [22] Wang W Q, Lu Z Z, Zhang W F, Chu S T, Little B E et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett 43, 2002-2005 (2018). doi: 10.1364/OL.43.002002

    CrossRef Google Scholar

    [23] Wang C, Zhang M, Zhu R R, Hu H, Loncar M. Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation. Nat Commun 10, 978 (2019). doi: 10.1038/s41467-019-08969-6

    CrossRef Google Scholar

    [24] He Y, Yang Q F, Ling J W, Luo R, Liang H X et al. A self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138-1144 (2019). doi: 10.1364/OPTICA.6.001138

    CrossRef Google Scholar

    [25] Jost J D, Lucas E, Herr T, Lecaplain C, Brasch V et al. All-optical stabilization of a soliton frequency comb in a crystalline microresonator. Opt Lett 40, 4723-4726 (2015). doi: 10.1364/OL.40.004723

    CrossRef Google Scholar

    [26] Zhou H, Geng Y, Cui W W, Huang S W, Zhou Q et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci Appl 8, 50 (2019). doi: 10.1038/s41377-019-0161-y

    CrossRef Google Scholar

    [27] Padmaraju K, Bergman K. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 3, 269-281 (2014). doi: 10.1515/nanoph-2013-0013

    CrossRef Google Scholar

    [28] Carmon T, Yang L, Vahala K J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt Express 12, 4742-4750 (2004). doi: 10.1364/OPEX.12.004742

    CrossRef Google Scholar

    [29] Ikeda K, Saperstein R E, Alic N, Fainman Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express 16, 12987-12994 (2008). doi: 10.1364/OE.16.012987

    CrossRef Google Scholar

    [30] Lee J M. Athermal silicon photonics//Pavesi L, Lockwood D J. Silicon Photonics Ⅲ: Systems and Applications. Berlin Heidelberg: Springer-Verlag, 2016.

    Google Scholar

    [31] Kokubun Y, Funato N, Takizawa M. Athermal waveguides for temperature-independent lightwave devices. IEEE Photonics Technol Lett 5, 1297-1300 (1993) doi: 10.1109/68.250049

    CrossRef Google Scholar

    [32] Chu S T, Pan W G, Suzuki S, Little B E, Sato S et al. Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay. IEEE Photonics Technol Lett 11, 1138-1140 (1999). doi: 10.1109/68.784226

    CrossRef Google Scholar

    [33] Teng J, Dumon P, Bogaerts W, Zhang H B, Jian X G et al. Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt Express 17, 14627-14633 (2009). doi: 10.1364/OE.17.014627

    CrossRef Google Scholar

    [34] Milošević M M, Emerson N G, Gardes F Y, Chen X, Adikaari A A D T et al. Athermal waveguides for optical communication wavelengths. Opt Lett 36, 4659-4661 (2011). doi: 10.1364/OL.36.004659

    CrossRef Google Scholar

    [35] Raghunathan V, Izuhara T, Michel J, Kimerling L. Stability of polymer-dielectric bi-layers for Athermal silicon photonics. Opt Express 20, 16059-16066 (2012). doi: 10.1364/OE.20.016059

    CrossRef Google Scholar

    [36] Namnabat S, Kim K J, Jones A, Himmelhuber R, DeRose C T et al. Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material. Opt Express 25, 21471-21482 (2017). doi: 10.1364/OE.25.021471

    CrossRef Google Scholar

    [37] Guha B, Cardenas J, Lipson M. Athermal silicon microring resonators with titanium oxide cladding. Opt Express 21, 26557-26563 (2013). doi: 10.1364/OE.21.026557

    CrossRef Google Scholar

    [38] Djordjevic S S, Shang K P, Guan B B, Cheung S T S, Liao L et al. CMOS-compatible, Athermal silicon ring modulators clad with titanium dioxide. Opt Express 21, 13958-13968 (2013). doi: 10.1364/OE.21.013958

    CrossRef Google Scholar

    [39] Ptasinski J, Khoo I C, Fainman Y. Passive temperature stabilization of silicon photonic devices using liquid crystals. Materials 7, 2229-2241 (2014). doi: 10.3390/ma7032229

    CrossRef Google Scholar

    [40] Guha B, Kyotoku B B C, Lipson M. CMOS-compatible athermal silicon microring resonators. Opt Express 18, 3487-3493 (2010). doi: 10.1364/OE.18.003487

    CrossRef Google Scholar

    [41] Luo L W, Wiederhecker G S, Preston K, Lipson M. Power insensitive silicon microring resonators. Opt Lett 37, 590-592 (2012). doi: 10.1364/OL.37.000590

    CrossRef Google Scholar

    [42] Grudinin I, Lee H, Chen T, Vahala K. Compensation of thermal nonlinearity effect in optical resonators. Opt Express 19, 7365-7372 (2011). doi: 10.1364/OE.19.007365

    CrossRef Google Scholar

    [43] Jin L, Di Lauro L, Pasquazi A, Peccianti M, Moss D J et al. Optical multi-stability in a nonlinear high-order microring resonator filter. APL Photonics 5, 056106 (2020). doi: 10.1063/5.0002941

    CrossRef Google Scholar

    [44] Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A 87, 053852 (2013). doi: 10.1103/PhysRevA.87.053852

    CrossRef Google Scholar

    [45] Godey C, Balakireva I V, Coillet A, Chembo Y K. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys Rev A 89, 063814 (2014). doi: 10.1103/PhysRevA.89.063814

    CrossRef Google Scholar

    [46] Little B. A VLSI photonics platform. In OFC 2003 Optical Fiber Communications Conference, 444-445 (IEEE, 2003); http://doi.org/10.1109/OFC.2003.315925.

    Google Scholar

    [47] Ferrera M, Razzari L, Duchesne D, Morandotti R, Yang Z et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics 2, 737-740 (2008). doi: 10.1038/nphoton.2008.228

    CrossRef Google Scholar

    [48] Moss D J, Morandotti R, Gaeta A L, Lipson M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics 7, 597-607 (2013). doi: 10.1038/nphoton.2013.183

    CrossRef Google Scholar

    [49] Widlar R J. New developments in IC voltage regulators. IEEE J Solid-State Circuits 6, 2-7 (1971). doi: 10.1109/JSSC.1971.1050151

    CrossRef Google Scholar

  • oea-2020-0028 Shaohao Wang Supplementary Information
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(6264) PDF downloads(1412) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint