Nonlinear high-harmonic generation in micro-resonators is a common technique used to extend the operating range of applications such as self-referencing systems and coherent communications in the visible region. However, the generated high-harmonic emissions are subject to a resonance shift with a change in temperature. We present a comprehensive study of the thermal behavior induced phase mismatch that shows this resonance shift can be compensated by a combination of the linear and nonlinear thermo-optics effects. Using this model, we predict and experimentally demonstrate visible third harmonic modes having temperature dependent wavelength shifts between −2.84 pm/ºC and 2.35 pm/ºC when pumped at the L-band. Besides providing a new way to achieve athermal operation, this also allows one to measure the thermal coefficients and Q-factor of the visible modes. Through steady state analysis, we have also identified the existence of stable athermal third harmonic generation and experimentally demonstrated orthogonally pumped visible third harmonic modes with a temperature dependent wavelength shift of 0.05 pm/ºC over a temperature range of 12 ºC. Our findings promise a configurable and active temperature dependent wavelength shift compensation scheme for highly efficient and precise visible emission generation for potential 2f–3f self-referencing in metrology, biological and chemical sensing applications.
Athermal third harmonic generation in micro-ring resonators
作者单位信息
出版日期:2020年12月24日
摘要
参考文献
1. Carmon T, Vahala K J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat Phys 3, 430–435 (2007).
2. Corcoran B, Monat C, Grillet C, Moss D J, Eggleton B J et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics 3, 206–210 (2009).
3. Sasagawa K, Tsuchiya M. Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator. Appl Phys Express 2, 122401 (2009).
4. Farnesi D, Barucci A, Righini G C, Berneschi S, Soria S et al. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators. Phys Rev Lett 112, 093901 (2014).
5. Asano M, Komori S, Ikuta R, Imoto N, Özdemir Ş K et al. Visible light emission from a silica microbottle resonator by second- and third-harmonic generation. Opt Lett 41, 5793–5796 (2016).
6. Liu H L, Zhang Z B, Shang Z C, Gao T, Wu X J. Dynamically manipulating third-harmonic generation of phase change material with gap-Plasmon resonators. Opt Lett 44, 5053–5056 (2019).
7. Levy J S, Foster M A, Gaeta A L, Lipson M. Harmonic generation in silicon nitride ring resonators. Opt Express 19, 11415–11421 (2011).
8. Wang L R, Chang L, Volet N, Pfeiffer M H P, Zervas M et al. Frequency comb generation in the green using silicon nitride microresonators. Laser Photonics Rev 10, 631–638 (2016).
9. Lu X Y, Moille G, Li Q, Westly D A, Singh A et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat Photonics 13, 593–601 (2019).
10. Surya J B, Guo X, Zou C L, Tang H X. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica 5, 103–108 (2018).
11. Guo X, Zou C L, Jiang L, Tang H X. All-optical control of linear and nonlinear energy transfer via the Zeno effect. Phys Rev Lett 120, 203902 (2018).
12. Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett 122, 173903 (2019).
13. Li Y H, Wang S H, Tian Y Y, Ho W L, Li Y Y et al. Third-harmonic generation in CMOS-compatible highly doped silica micro-ring resonator. Opt Express 28, 641-651 (2020).
14. Rodriguez A, Soljačić M, Joannopoulos J D, JohnsonS G. χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. Opt Express 15, 7303–7318 (2007).
15. Zhang X Y, Cao Q T, Wang Z, Liu Y X, Qiu C W et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat Photonics 13, 21–24 (2019).
16. Liu B D, Yu H K, Li Z Y, Tong L M. Phase-matched second-harmonic generation in coupled nonlinear optical waveguides. J Opt Soc Am B 36, 2650–2658 (2019).
17. Guo H, Karpov M, Lucas E, Kordts A, Pfeiffer M H P et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys 13, 94–102 (2017).
18. Bao C Y, Xuan Y, Jaramillo-Villegas J A, Leaird D E, Qi M H et al. Direct soliton generation in microresonators. Opt Lett 42, 2519–2522 (2017).
19. Xue X X, Xuan Y, Wang C, Wang P H, Liu Y et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt Express 24, 687–698 (2016).
20. Joshi C, Jang J K, Luke K, Ji X C, Miller S A et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt Lett 41, 2565–2568 (2016).
21. Lee B S, Zhang M, Barbosa F A S, Miller S A, Mohanty A et al. On-chip thermo-optic tuning of suspended microresonators. Opt Express 25, 12109–12120 (2017).
22. Wang W Q, Lu Z Z, Zhang W F, Chu S T, Little B E et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett 43, 2002–2005 (2018).
23. Wang C, Zhang M, Zhu R R, Hu H, Loncar M. Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation. Nat Commun 10, 978 (2019).
24. He Y, Yang Q F, Ling J W, Luo R, Liang H X et al. A self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).
25. Jost J D, Lucas E, Herr T, Lecaplain C, Brasch V et al. All-optical stabilization of a soliton frequency comb in a crystalline microresonator. Opt Lett 40, 4723–4726 (2015).
26. Zhou H, Geng Y, Cui W W, Huang S W, Zhou Q et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci Appl 8, 50 (2019).
27. Padmaraju K, Bergman K. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 3, 269–281 (2014).
28. Carmon T, Yang L, Vahala K J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt Express 12, 4742–4750 (2004).
29. Ikeda K, Saperstein R E, Alic N, Fainman Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express 16, 12987–12994 (2008).
30. Lee J M. Athermal silicon photonics//Pavesi L, Lockwood D J. Silicon Photonics III: Systems and Applications. Berlin Heidelberg: Springer-Verlag, 2016.
31. Kokubun Y, Funato N, Takizawa M. Athermal waveguides for temperature-independent lightwave devices. IEEE Photonics Technol Lett 5, 1297–1300 (1993)
32. Chu S T, Pan W G, Suzuki S, Little B E, Sato S et al. Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay. IEEE Photonics Technol Lett 11, 1138–1140 (1999).
33. Teng J, Dumon P, Bogaerts W, Zhang H B, Jian X G et al. Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt Express 17, 14627–14633 (2009).
34. Milošević M M, Emerson N G, Gardes F Y, Chen X, Adikaari A A D T et al. Athermal waveguides for optical communication wavelengths. Opt Lett 36, 4659–4661 (2011).
35. Raghunathan V, Izuhara T, Michel J, Kimerling L. Stability of polymer-dielectric bi-layers for Athermal silicon photonics. Opt Express 20, 16059–16066 (2012).
36. Namnabat S, Kim K J, Jones A, Himmelhuber R, DeRose C T et al. Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material. Opt Express 25, 21471–21482 (2017).
37. Guha B, Cardenas J, Lipson M. Athermal silicon microring resonators with titanium oxide cladding. Opt Express 21, 26557–26563 (2013).
38. Djordjevic S S, Shang K P, Guan B B, Cheung S T S, Liao L et al. CMOS-compatible, Athermal silicon ring modulators clad with titanium dioxide. Opt Express 21, 13958–13968 (2013).
39. Ptasinski J, Khoo I C, Fainman Y. Passive temperature stabilization of silicon photonic devices using liquid crystals. Materials 7, 2229–2241 (2014).
40. Guha B, Kyotoku B B C, Lipson M. CMOS-compatible athermal silicon microring resonators. Opt Express 18, 3487–3493 (2010).
41. Luo L W, Wiederhecker G S, Preston K, Lipson M. Power insensitive silicon microring resonators. Opt Lett 37, 590–592 (2012).
42. Grudinin I, Lee H, Chen T, Vahala K. Compensation of thermal nonlinearity effect in optical resonators. Opt Express 19, 7365–7372 (2011).
43. Jin L, Di Lauro L, Pasquazi A, Peccianti M, Moss D J et al. Optical multi-stability in a nonlinear high-order microring resonator filter. APL Photonics 5, 056106 (2020).
44. Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A 87, 053852 (2013).
45. Godey C, Balakireva I V, Coillet A, Chembo Y K. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys Rev A 89, 063814 (2014).
46. Little B. A VLSI photonics platform. In OFC 2003 Optical Fiber Communications Conference, 444–445 (IEEE, 2003); http://doi.org/10.1109/OFC.2003.315925.
47. Ferrera M, Razzari L, Duchesne D, Morandotti R, Yang Z et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics 2, 737–740 (2008).
48. Moss D J, Morandotti R, Gaeta A L, Lipson M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics 7, 597–607 (2013).
49. Widlar R J. New developments in IC voltage regulators. IEEE J Solid-State Circuits 6, 2–7 (1971).
基金项目:
the Natural Science Foundation of Fujian Province (Grant No. 2017J01756), the National Natural Science Foundation of China (Grant No. R-IND12101, No. 61675231), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB24030300).
导出参考文献,格式为:
引用本文:
Wang S H, Li Y H, Little B E, Wang L R, Wang X et al. Athermal third harmonic generation in micro-ring resonators. Opto-Electron Adv 3, 200028 (2020).