Known as laser trapping, optical tweezers, with nanometer accuracy and pico-newton precision, plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines. In order to advance the flourishing applications for those achievements, it is necessary to make clear the three-dimensional dynamic process of micro-particles stepping into an optical field. In this paper, we utilize the ray optics method to calculate the optical force and optical torque of a micro-sphere in optical tweezers. With the influence of viscosity force and torque taken into account, we numerically solve and analyze the dynamic process of a dielectric micro-sphere in optical tweezers on the basis of Newton mechanical equations under various conditions of initial positions and velocity vectors of the particle. The particle trajectory over time can demonstrate whether the particle can be successfully trapped into the optical tweezers center and reveal the subtle details of this trapping process. Even in a simple pair of optical tweezers, the dielectric micro-sphere exhibits abundant phases of mechanical motions including acceleration, deceleration, and turning. These studies will be of great help to understand the particle-laser trap interaction in various situations and promote exciting possibilities for exploring novel ways to control the mechanical dynamics of microscale particles.
Home > Journal Home > Opto-Electronic Advances
Opto-Electronic Advances
ISSN: 2096-4579
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
3D dynamic motion of a dielectric micro-sphere within optical tweezers
Author Affiliations

First published at:Jan 27, 2021
Abstract
References
1. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288–290 (1986).
2. Liu J, Li ZY. Controlled mechanical motions of microparticles in optical tweezers. Micromachines (Basel) 9, 232 (2018).
3. Guo HL, Li ZY. Optical tweezers technique and its applications. Sci China Phys, Mech Astron 56, 2351–2360 (2013).
4. Mehta AD, Rief M, Spudich JA, Smith DA, Simmons RM. Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999).
5. Liu W, Dong DS, Yang H, Gong QH, Shi KB. Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference. Opto-Electron Adv 3, 200022 (2020).
6. Helgadottir S, Argun A, Volpe G. Digital video microscopy enhanced by deep learning. Optica 6, 506–513 (2019).
7. Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nat Commun 6, 5885 (2015).
8. Hay RF, Gibson GM, Lee MP, Padgett MJ, Phillips DB. Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation. Opt Express 22, 18662–18667 (2014).
9. Hajjoul H, Mathon J, Viero Y, Bancaud A. Optimized micromirrors for three-dimensional single-particle tracking in living cells. Appl Phys Lett 98, 243701 (2011).
10. Huang L, Guo HL, Li KL, Chen YH, Feng BH et al. Three dimensional force detection of gold nanoparticles using backscattered light detection. J Appl Phys 113, 113103 (2013).
11. Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).
12. Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong LM, Käll M. Laser trapping of colloidal metal nanoparticles. ACS Nano 9, 3453–3469 (2015).
13. Rahimzadegan A, Fruhnert M, Alaee R, Fernandez-Corbaton I, Rockstuhl C. Optical force and torque on dipolar dual chiral particles. Phys Rev B 94, 125123 (2016).
14. Melzer JE, McLeod E. Fundamental limits of optical tweezer nanoparticle manipulation speeds. ACS Nano 12, 2440–2447 (2018).
15. Kim K, Yoon J, Park Y. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica 2, 343–346 (2015).
16. Qin JQ, Wang XL, Ding J, Chen J, Fan YX et al. FDTD approach to optical forces of tightly focused vector beams on metal particles. Opt Express 17, 8407–8416 (2009).
17. Nieminen TA, Loke VLY, Stilgoe AB, Knöner G, Brańczyk AM et al. Optical tweezers computational toolbox. J Opt A: Pure Appl Opt 9, S196–S203 (2007).
18. Stilgoe AB, Mallon MJ, Cao YY, Nieminen TA, Rubinsztein-Dunlop H. Optical tweezers toolbox: better, faster, cheaper; choose all three. Proc. SPIE 8458, 84582E (2012).
19. Zong YW, Liu J, Liu R, Guo HL, Yang MC et al. An optically driven bistable janus rotor with patterned metal coatings. ACS Nano 9, 10844–10851 (2015).
20. Potoček V, Barnett SM. Generalized ray optics and orbital angular momentum carrying beams. New J Phys 17, 103034 (2015).
21. Liu J, Zhang C, Zong YW, Guo HL, Li ZY. Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle. Photon Res 3, 265–274 (2015).
22. Hajizadeh F, Shao L, Andrén D, Johansson P, Rubinsztein-Dunlop H et al. Brownian fluctuations of an optically rotated nanorod. Optica 4, 746–751 (2017).
23. Simon A, Libchaber A. Escape and synchronization of a Brownian particle. Phys Rev Lett 68, 3375–3378 (1992).
24. Bui AAM, Stilgoe AB, Lenton ICD, Gibson LJ, Kashchuk AV et al. Theory and practice of simulation of optical tweezers. J Quant Spectrosc Radiat Transf 195, 66–75 (2017).
25. Sanderse B, Koren B. Accuracy analysis of explicit Runge–Kutta methods applied to the incompressible Navier–Stokes equations. J Comput Phys 231, 3041–3063 (2012).
26. Zingg DW, Chisholm TT. Runge–Kutta methods for linear ordinary differential equations. Appl Numer Math 31, 227–238 (1999).
27. Ramos H, Vigo-Aguiar J. A fourth-order Runge–Kutta method based on BDF-type Chebyshev approximations. J Comput Appl Math 204, 124–136 (2007).
28. Simmons RM, Finer JT, Chu S, Spudich JA. Quantitative measurements of force and displacement using an optical trap. Biophys J 70, 1813–1822 (1996).
Funds:
the National Natural Science Foundation of China (Grant No. 11974119 and No. 11804399), and the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (Grant No. CZQ20018), and National Key R&D Program of China (No. 2018YFA 0306200).
Export Citations as:
For
Get Citation:
Liu J, Zheng M, Xiong ZJ et al. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron Adv 4, 200015 (2021).