Yang QX, Liu HL, He S, Tian QY, Xu B et al. Circular cladding waveguides in Pr:YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance. Opto-Electron Adv 4, 200005 (2021).. doi: 10.29026/oea.2021.200005
Citation: Yang QX, Liu HL, He S, Tian QY, Xu B et al. Circular cladding waveguides in Pr:YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance. Opto-Electron Adv 4, 200005 (2021).. doi: 10.29026/oea.2021.200005

Original Article Open Access

Circular cladding waveguides in Pr:YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance

More Information
  • Author Bio: Quanxin Yang obtained his B.E. degree at Xidian University, China. Currently he is a Master's degree student under the supervision of Prof. Pengfei Wu and Dr. Hongliang Liu in the Institute of Modern Optics, Nankai University. His research interests include novel functional materials in optics and fabrication of photonic devices by femtosecond laser; Hongliang Liu received the Ph.D degree from Shandong University, China in 2016. He is currently a lecture at Nankai University. His research interests include the interaction of intense femtosecond lasers with materials and the applications of the fabrication of photonic devices. Email: drliuhl@nankai.edu.cn
  • Corresponding author: HL Liu,E-mail: drliuhl@nankai.edu.cn 
  • We report on the fabrication of circular cladding waveguides with cross-section diameters of 60−120 μm in Pr:YAG crystal by applying femtosecond laser inscription. The fabricated waveguides present 2D guidance on the cross-section and fairly low propagation losses. Multiple high-order guiding modes are observed in waveguides with different diameters. Corresponding simulation results reveal the origin of a specific kind of guiding modes. Confocal micro-Raman (μ-Raman) experiments demonstrate the modification effects in femtosecond laser affected areas and ascertain the refractive index induced guiding mechanism. In addition, luminescence emission properties of Pr3+ ions at waveguide volume are well preserved during the femtosecond laser inscription process, which may result in a potential high-power visible waveguide laser.
  • 加载中
  • [1] Zhang D, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv 2, 190002 (2019). doi: 10.29026/oea.2019.190002

    CrossRef Google Scholar

    [2] Liu X, Bai B, Chen Q, Sun H. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019). doi: 10.29026/oea.2019.190021

    CrossRef Google Scholar

    [3] Zhang LM, Guo TY, Ren YY, Cai YJ, Mackenzie MD et al. Cooperative up-converted luminescence in Yb, Na:CaF2 cladding waveguides by femtosecond laser inscription. Opt Commun 441, 8–13 (2019). doi: 10.1016/j.optcom.2019.01.032

    CrossRef Google Scholar

    [4] Bharadwaj V, Courvoisier A, Fernandez TT, Ramponi R, Galzerano G et al. Femtosecond laser inscription of Bragg grating waveguides in bulk diamond. Opt Lett 42, 3451–3453 (2017). doi: 10.1364/OL.42.003451

    CrossRef Google Scholar

    [5] Sotillo B, Bharadwaj V, Hadden JP, Sakakura M, Chiappini A et al. Diamond photonics platform enabled by femtosecond laser writing. Sci Rep 6, 35566 (2016). doi: 10.1038/srep35566

    CrossRef Google Scholar

    [6] Li SL, Deng FM, Huang ZP. Femtosecond laser inscription waveguides in Nd:GdVO4 crystal. Opt Eng 55, 107104 (2016). doi: 10.1117/1.OE.55.10.107104

    CrossRef Google Scholar

    [7] Chandrahalim H, Rand SC, Fan XD. Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides. Sci Rep 6, 32668 (2016). doi: 10.1038/srep32668

    CrossRef Google Scholar

    [8] Vázquez MR, Sotillo B, Rampini S, Bharadwaj V, Gholipour B et al. Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass. J Phys Photonics 1, 015006 (2018). doi: 10.1088/2515-7647/aade60

    CrossRef Google Scholar

    [9] Li SL, Ye YK, Shen CY, Wang HL. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters. Opt Eng 57, 117103 (2018). doi: 10.1117/1.OE.57.11.117103

    CrossRef Google Scholar

    [10] Piromjitpong T, Dubov M, Boscolo S. High-repetition-rate femtosecond-laser inscription of low-loss thermally stable waveguides in lithium niobate. Appl Phys A 125, 302 (2019). doi: 10.1007/s00339-019-2609-6

    CrossRef Google Scholar

    [11] Lv JM, Cheng YZ, Lu QM, Vázquez de Aldana JR, Hao XT et al. Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation. Opt Mater 57, 169–173 (2016). doi: 10.1016/j.optmat.2016.05.003

    CrossRef Google Scholar

    [12] Chen F, Vázquez de Aldana JRV. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev 8, 251–275 (2014). doi: 10.1002/lpor.201300025

    CrossRef Google Scholar

    [13] Jia Y, Wang S, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.19004

    CrossRef Google Scholar

    [14] Skryabin N, Kalinkin A, Dyakonov I, Kulik S. Femtosecond laser written depressed-cladding waveguide 2 × 2, 1 × 2 and 3 × 3 directional couplers in Tm(3+):YAG crystal. Micromachines (Basel) 11, 1 (2019). doi: 10.3390/mi11010001

    CrossRef Google Scholar

    [15] Ren YY, Jiao Y, Vázquez de Aldana JR, Chen F. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties. Opt Mater 58, 61–66 (2016). doi: 10.1016/j.optmat.2016.05.023

    CrossRef Google Scholar

    [16] Bérubé JP, Lapointe J, Dupont A, Bernier M, Vallée R. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Opt Lett 44, 37–40 (2019). doi: 10.1364/OL.44.000037

    CrossRef Google Scholar

    [17] Li SL, Huang ZP, Ye YK, Wang HL. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals. Opt Laser Technol 102, 247–253 (2018). doi: 10.1016/j.optlastec.2018.01.003

    CrossRef Google Scholar

    [18] Romero C, García Ajates J, Chen F, Vázquez de Aldana JR. Fabrication of tapered circular depressed-cladding waveguides in Nd:YAG crystal by femtosecond-laser direct inscription. Micromachines (Basel) 11, 10 (2019). doi: 10.3390/mi11010010

    CrossRef Google Scholar

    [19] Nie WJ, He RY, Cheng C, Rocha U, Vázquez de Aldana JR et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing. Opt Lett 41, 2169–2172 (2016). doi: 10.1364/OL.41.002169

    CrossRef Google Scholar

    [20] Liu HL, Luo SY, Xu B, Xu HY, Cai ZP et al. Femtosecond-laser micromachined Pr:YLF depressed cladding waveguide: Raman, fluorescence, and laser performance. Opt Mater Express 7, 3990–3997 (2017). doi: 10.1364/OME.7.003990

    CrossRef Google Scholar

    [21] Okhrimchuk AG, Butvina LN, Dianov EM, Lichkova NV, Zagorodnev VN et al. New laser transition in a Pr3+:RbPb2Cl5crystal in the 2.3—2.5-μm range. Quantum Electron 36, 41–44 (2006). doi: 10.1070/QE2006v036n01ABEH013101

    CrossRef Google Scholar

    [22] Nie HK, Zhang PX, Zhang BT, Yang KJ, Zhang LH et al. Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95 μm. Opt Lett 42, 699–702 (2017). doi: 10.1364/OL.42.000699

    CrossRef Google Scholar

    [23] Fan MQ, Li T, Li GQ, Zhao SZ, Yang KJ et al. Passively Q-switched Ho, Pr:LiLuF4 laser with graphitic carbon nitride nanosheet film. Opt Express 25, 12796–12803 (2017). doi: 10.1364/OE.25.012796

    CrossRef Google Scholar

    [24] Cheng YJ, Peng J, Xu B, Yang H, Luo ZQ et al. Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber. IEEE Photonics J 8, 1–6 (2016).

    Google Scholar

    [25] Fibrich M, Šulc J, Zavadilová A, Jelínková H. Nonlinear mirror mode-locked Pr:YAlO3 laser. Laser Phys 27, 055801 (2017). doi: 10.1088/1555-6611/aa66f5

    CrossRef Google Scholar

    [26] Sattayaporn S, Loiseau P, Aka G, Marzahl DT, Kränkel C. Crystal growth, spectroscopy and laser performances of Pr(3+):Sr0.7La0.3Mg0.3Al11.7O19 (Pr:ASL). Opt Express 26, 1278–1289 (2018). doi: 10.1364/OE.26.001278

    CrossRef Google Scholar

    [27] Wu PF, He S, Liu HL. Annular waveguide lasers at 1064 nm in Nd:YAG crystal produced by femtosecond laser inscription. Appl Opt 57, 5420–5424 (2018). doi: 10.1364/AO.57.005420

    CrossRef Google Scholar

    [28] Liu HL, Vázquez de Aldana JR, Hong MH, Chen F. Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: Fabrication and continuous-wave lasing. IEEE J Sel Top Quantum Electron 22, 227–230 (2016). doi: 10.1109/JSTQE.2015.2439191

    CrossRef Google Scholar

    [29] McDaniel S, Thorburn F, Lancaster A, Stites R, Cook G et al. Operation of Ho:YAG ultrafast laser inscribed waveguide lasers. Appl Opt 56, 3251–3256 (2017). doi: 10.1364/AO.56.003251

    CrossRef Google Scholar

    [30] Kim MH, Calmano T, Choi SY, Lee BJ, Baek IH et al. Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation. Opt Mater Express 6, 2468–2474 (2016). doi: 10.1364/OME.6.002468

    CrossRef Google Scholar

    [31] Gómez-Castellanos I, Rodriguez-Dagnino RM. Intensity distributions and cutoff frequencies of linearly polarized modes for a step-index elliptical optical fiber. Opt Eng 46, 045003 (2007). doi: 10.1117/1.2719698

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(5176) PDF downloads(821) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint